Hydrochemistry of the river mouths of Cheshskaya gulf, Barents sea

1987 ◽  
Vol 11 (4) ◽  
pp. 279-284
Author(s):  
I. V. Miskevich
Keyword(s):  
2021 ◽  
Vol 49 (2) ◽  
pp. 67-79
Author(s):  
I. V. Miskevich ◽  
A. V. Leshchev

The statistical characteristics of the content of suspended matter in the macrotidal estuaries of the Kuloi River with a lateral tributary of the Pocha, the Pyya River (White Sea) and the Chesha River in the Barents Sea. Their maximum values in the surface layers of estuarine waters due to the roiling of bottom sediments by tidal currents can reach a level of 500–4000 mg/l and even more. The typical range of fluctuations in the concentration of suspended matter in such river mouths will be 90–720 mg/l for taiga rivers and 200–1830 mg/l for tundra rivers. The higher turbidity of the estuarine waters of the tundra zone is associated with the degradation of its permafrost soils against the background of the observed climate warming. The relationship between suspended solids and salinity distribution at the mouths of small rivers may differ markedly from the conditions observed at the mouths of medium and large rivers.


2019 ◽  
Vol 138 (1) ◽  
pp. 1-15
Author(s):  
Luca Samperi ◽  
Kamaldeen Omosanya ◽  
Giorgio Minelli ◽  
Ståle Johansen

Author(s):  
Larisa A. Pautova ◽  
Vladimir A. Silkin ◽  
Marina D. Kravchishina ◽  
Valeriy G. Yakubenko ◽  
Anna L. Chultsova

The structure of the summer planktonic communities of the Northern part of the Barents sea in the first half of August 2017 were studied. In the sea-ice melting area, the average phytoplankton biomass producing upper 50-meter layer of water reached values levels of eutrophic waters (up to 2.1 g/m3). Phytoplankton was presented by diatoms of the genera Thalassiosira and Eucampia. Maximum biomass recorded at depths of 22–52 m, the absolute maximum biomass community (5,0 g/m3) marked on the horizon of 45 m (station 5558), located at the outlet of the deep trench Franz Victoria near the West coast of the archipelago Franz Josef Land. In ice-free waters, phytoplankton abundance was low, and the weighted average biomass (8.0 mg/m3 – 123.1 mg/m3) corresponded to oligotrophic waters and lower mesotrophic waters. In the upper layers of the water population abundance was dominated by small flagellates and picoplankton from, biomass – Arctic dinoflagellates (Gymnodinium spp.) and cold Atlantic complexes (Gyrodinium lachryma, Alexandrium tamarense, Dinophysis norvegica). The proportion of Atlantic species in phytoplankton reached 75%. The representatives of warm-water Atlantic complex (Emiliania huxleyi, Rhizosolenia hebetata f. semispina, Ceratium horridum) were recorded up to 80º N, as indicators of the penetration of warm Atlantic waters into the Arctic basin. The presence of oceanic Atlantic species as warm-water and cold systems in the high Arctic indicates the strengthening of processes of “atlantificacion” in the region.


Author(s):  
Valeriy G. Yakubenko ◽  
Anna L. Chultsova

Identification of water masses in areas with complex water dynamics is a complex task, which is usually solved by the method of expert assessments. In this paper, it is proposed to use a formal procedure based on the application of the method of optimal multiparametric analysis (OMP analysis). The data of field measurements obtained in the 68th cruise of the R/V “Academician Mstislav Keldysh” in the summer of 2017 in the Barents Sea on the distribution of temperature, salinity, oxygen, silicates, nitrogen, and phosphorus concentration are used as a data for research. A comparison of the results with data on the distribution of water masses in literature based on expert assessments (Oziel et al., 2017), allows us to conclude about their close structural similarity. Some differences are related to spatial and temporal shifts of measurements. This indicates the feasibility of using the OMP analysis technique in oceanological studies to obtain quantitative data on the spatial distribution of different water masses.


Sign in / Sign up

Export Citation Format

Share Document