Bismuth solubility through binding by various organic compounds and naturally occurring soil organic matter

2010 ◽  
Vol 45 (6) ◽  
pp. 746-753 ◽  
Author(s):  
Tomoyoshi Murata
2013 ◽  
Vol 48 (1) ◽  
pp. 79-84 ◽  
Author(s):  
Loukas Petridis ◽  
Haile Ambaye ◽  
Sindhu Jagadamma ◽  
S. Michael Kilbey ◽  
Bradley S. Lokitz ◽  
...  

2001 ◽  
Vol 81 (3) ◽  
pp. 317-323 ◽  
Author(s):  
Baoshan Xing

Sorption experiments with apolar organic compounds (naphthalene and 1,2-dichorobenzene) were conducted to evaluate sorption mechanisms in soil organic matter (SOM). All isotherms were nonlinear and competition between solutes was observed. Nonlinearity and competition increased in an order of peat humic acid (HA) < peat < peat humin. Isotherms of Al-saturated HA (Al-HA) were more nonlinear than untreated HA and Ca-HA, and sorption/desorption hysteresis occurred only in Al-HA. These results are not consistent with partitioning theory or the presence of high-surface-area carbonaceous materials (HSACM) in soil. But the results are consistent with dual-mode sorption, where SOM is postulated to have both condensed (rigid) and expanded (flexible) domains, and adsorption takes place only in the condensed domains and partitioning in both domains. These non-ideal sorptive behaviors need to be incorporated into predictive models to more accurately describe the fate and transport of organics in soil and subsurface environments. Key words: sorption, organic compounds, organic matter, dual-mode, partition, mechanisms


2015 ◽  
Vol 2 (1) ◽  
pp. 587-618 ◽  
Author(s):  
A. H. Bingham ◽  
M. F. Cotrufo

Abstract. Nitrogen is one of the most important ecosystem nutrients and often its availability limits net primary production as well as stabilization of soil organic matter. The long-term storage of nitrogen-containing organic matter in soils was classically attributed to chemical complexity of plant and microbial residues that retarded microbial degradation. Recent advances have revised this framework, with the understanding that persistent soil organic matter consists largely of chemically labile, microbially processed organic compounds. Chemical bonding to minerals and physical protection in aggregates are more important to long-term (i.e., centuries to millennia) preservation of these organic compounds that contain the bulk of soil nitrogen rather than molecular complexity, with the exception of nitrogen in pyrogenic organic matter. This review examines the factors and mechanisms that influence the long-term sequestration of organic nitrogen in mineral soils. It examines the policy and management implications which stem from this newly accepted paradigm, such as critical loads considerations and nitrogen saturation and mitigation consequences. Finally, it emphasizes how essential it is for this important but underappreciated pool to be better quantified and incorporated into policy and management decisions.


1983 ◽  
Vol 17 (4) ◽  
pp. 227-231 ◽  
Author(s):  
Cary T. Chiou ◽  
Paul E. Porter ◽  
David W. Schmedding

Sign in / Sign up

Export Citation Format

Share Document