Influence of tomato waste compost ratios on plant growth and fruit quality of cucumber and summer squash

Author(s):  
Mohamed A. Rashwan ◽  
Fahad Naser Alkoaik ◽  
Mohamed Ibrahim Morsy ◽  
Ronnel Blanqueza Fulleros ◽  
Mansour Nagy Ibrahim
2020 ◽  
Vol 8 (5) ◽  
pp. 551-557
Author(s):  
Gurjot Singh Pelia ◽  
◽  
A K Baswal ◽  

Prevalence of heavy soil is a major problem for fruit cultivation under Punjab conditions consequently leading to deficiency of several micro-nutrients including zinc (Zn), iron (Fe), and manganese (Mn) which adversely affects the growth and productivity. In this view, a study was planned to investigate the effect of foliar applications of zinc sulphate (ZnSO4), iron sulphate (FeSO4), and manganese sulphate (MnSO4) on vegetative growth, reproductive growth and fruit quality of papaya cv. Red lady. Plants sprayed with ZnSO4 (0.4 %) exhibited significantly highest plant height, plant girth, number of leaves, petiole length; initiated an earliest flowering and fruiting; and improved fruit quality viz., fruit weight, fruit length, titratable acidity, soluble solids concentrations, ascorbic acid content, total phenols content, and total carotenoids content as compared with the control and all other treatments. In conclusion, foliar application ZnSO4 (0.4 %) significantly improved plant growth and fruit quality in papaya cv. Red lady.


2014 ◽  
Vol 83 (4) ◽  
pp. 273-281 ◽  
Author(s):  
Thanda Aung ◽  
Yukinari Muramatsu ◽  
Naomi Horiuchi ◽  
Jingai Che ◽  
Yuya Mochizuki ◽  
...  

2002 ◽  
Vol 25 (10) ◽  
pp. 2243-2259 ◽  
Author(s):  
Shiow Y. Wang ◽  
Shin-Shan Lin
Keyword(s):  

2001 ◽  
pp. 503-508 ◽  
Author(s):  
A. Elia ◽  
F. Serio ◽  
A. Parente ◽  
P. Santamaria ◽  
G. Ruiz Rodriguez

Agriculture ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 153 ◽  
Author(s):  
Ratna Suthar ◽  
Cun Wang ◽  
M. Nunes ◽  
Jianjun Chen ◽  
Steven Sargent ◽  
...  

As a soil amendment, biochar can significantly improve soil quality and crop growth. Few studies, however, have explored biochar effects on crop quality. This study investigated the amendment effects of bamboo biochar pyrolyzed at different temperatures on plant growth and fruit quality of tomato (Solanum lycopersicum L.). Tomato ‘Micro-Tom’ plants were grown in a sand medium amended with 0, 1, and 3% of biochars produced at 300 °C, 450 °C, and 600 °C, respectively. Plant growth was monitored, and fruit harvested at the red stage was analyzed for color, texture, soluble solids content, sugars, ascorbic acid, and acidity. Results showed that biochars produced at 300 °C and amended at 3% or pyrolyzed at 450 °C and amended at 1% increased plant growth index. Contents of glucose, fructose, soluble solids, ascorbic acid, and sugar-to-acid ratios of fruits produced from the two treatments were significantly higher than the other treatments. The improved plant growth and fruit quality were related to the higher concentrations of NO3, P, Ca, and Mg in the growing media. Our results suggest that optimizing biochar use can be achieved by targeting biochar production conditions and application rate, which resulted in desirable amendment and fruit quality effects.


2000 ◽  
Vol 85 (3) ◽  
pp. 183-199 ◽  
Author(s):  
Shiow Y Wang ◽  
Mary J Camp
Keyword(s):  

2011 ◽  
Vol 9 (1) ◽  
pp. 271 ◽  
Author(s):  
P. Legua ◽  
R. Bellver ◽  
J. Forner ◽  
M. A. Forner-Giner

2016 ◽  
Vol 26 (3) ◽  
pp. 327-337 ◽  
Author(s):  
Shahzad M.A. Basra ◽  
Carol J. Lovatt

Growth-promoting properties of moringa (Moringa oleifera) leaves were investigated for potential use in crop production by comparing the efficacy of bimonthly foliar and root applications of a moringa leaf extract [MLE (3.3% w/v)] with the cytokinins 6-benzyladenine (6-BA) and trans-zeatin (t-Z), each at 25 mg·L−1, to increase plant growth, flowering, yield, fruit size, and fruit quality of ‘Super Sweet 100’ cherry tomato (Solanum lycopersicum). Foliar-applied t-Z and root-applied MLE increased canopy biomass (P ≤ 0.01) and root- and foliar-applied MLE increased lateral vegetative shoot number (P ≤ 0.001) and plant height (P ≤ 0.001) relative to untreated control plants. Only foliar-applied MLE increased floral shoot number compared with untreated control plants (P ≤ 0.001). Plants in all treatments, except root-applied 6-BA, produced more flowers than untreated control plants (P ≤ 0.001). Plants receiving root-applied t-Z produced the greatest number of flowers followed by plants receiving root-applied MLE. Cherry tomato plants treated with root-applied t-Z or MLE produced the greatest number of fruit per plant and significantly more than untreated control plants (P ≤ 0.001). Foliar-applied 6-BA and MLE and root-applied t-Z and MLE increased yield as grams of fruit per plant compared with the untreated control (P ≤ 0.01). Foliar- and root-applied MLE increased fruit concentrations of soluble sugars (P ≤ 0.001), protein (P ≤ 0.001), antioxidants (P ≤ 0.001), and lycopene (P ≤ 0.001) compared with fruit from untreated control plants. Foliar- and/or root-applied MLE resulted in the greatest leaf concentrations of protein (P ≤ 0.01), proline (P ≤ 0.01), arginine (P ≤ 0.01), and total antioxidants (P ≤ 0.05), which were all significantly greater than the concentrations in leaves from untreated control plants. The results of this single experiment provide evidence suggesting that MLE warrants further research as an inexpensive growth promoter for enhancing tomato plant biomass, yield, and fruit quality, especially in organic crop production, which prohibits the use of many commercial synthetic plant growth regulators.


Sign in / Sign up

Export Citation Format

Share Document