Large-scale aeolian sand movement on the west coast of Jutland, Denmark in late Subboreal to early Subatlantic time—a record of climate change or cultural impact?

GFF ◽  
2001 ◽  
Vol 123 (4) ◽  
pp. 193-203 ◽  
Author(s):  
Lars B. Clemmensen ◽  
Andrew S. Murray ◽  
Jens-Henrik Bech ◽  
Anette Clausen
1963 ◽  
Vol 20 (4) ◽  
pp. 939-967 ◽  
Author(s):  
Robert K. Lane

Oceanographic data collected in a line of stations extending seaward of the west coast of Vancouver Island, British Columbia, were reviewed and analyzed. On the basis of these data and the large-scale meteorological processes of wind, insolation, and precipitation, the characteristic structure of temperature and salinity in the coastal region was denned in five temporal stages throughout the year. These stages are presented as vertical sections along the line with characteristic ranges of values to be found in each of the structural elements.


2018 ◽  
Vol 61 (5) ◽  
pp. 429-440 ◽  
Author(s):  
Milica Stankovic ◽  
Naruemon Tantipisanuh ◽  
Anchana Prathep

Abstract Seagrass ecosystems are important contributors to mitigation of climate change, since they are responsible for large carbon sinks. However, there is limited knowledge regarding the importance of variability of carbon storage in various ecosystems. In this study, we estimated carbon storage in several structurally different seagrass meadows along the west coast of Thailand and determined whether degree of exposure, human disturbance, and meadow type influenced carbon storage within these meadows. Carbon content within the living vegetation was on average 3±2.7 Mg ha−1, whilst average storage of carbon in the sediment was 122±35.3 Mg ha−1. Meadow type and disturbance had a significant influence on total carbon storage in the ecosystem, while the degree of exposure of the bay did not show great differences. Uniform meadows had a higher average total carbon storage than mixed meadows (133±36.2 and 110±41.3 Mg ha−1, respectively). Undisturbed meadows had a higher average total carbon storage than disturbed ones (140±36.5 and 103±34.8 Mg ha−1, respectively). The results obtained contribute to our understanding of carbon storage on an ecosystem scale and can provide a baseline for proper management, conservation, and climate change studies in the region.


2019 ◽  
Vol 200 ◽  
pp. 103229 ◽  
Author(s):  
Yi Xu ◽  
Caihong Fu ◽  
Angelica Peña ◽  
Roy Hourston ◽  
Richard Thomson ◽  
...  

2009 ◽  
Vol 99 (6) ◽  
pp. 739-749 ◽  
Author(s):  
S. Prospero ◽  
N. J. Grünwald ◽  
L. M. Winton ◽  
E. M. Hansen

Phytophthora ramorum (oomycetes) is the causal agent of sudden oak death and ramorum blight on trees, shrubs, and woody ornamentals in the forests of coastal California and southwestern Oregon and in nurseries of California, Oregon, and Washington. In this study, we investigated the genetic structure of P. ramorum on the West Coast of the United States, focusing particularly on population differentiation potentially indicative of gene flow. In total, 576 isolates recovered from 2001 to 2005 were genotyped at 10 microsatellite loci. Our analyses of genetic diversity and inferences of reproductive mode confirm previous results for the Oregon and California populations, with the strong majority of the genotypes belonging to the NA1 clonal lineage and showing no evidence for sexual reproduction. The high incidence of genotypes shared among populations and the lack of genetic structure among populations show that important large-scale, interpopulation genetic exchanges have occurred. This emphasizes the importance of human activity in shaping the current structure of the P. ramorum population on the West Coast of the United States.


2013 ◽  
Vol 65 ◽  
pp. 254-259 ◽  
Author(s):  
Sok Kuh Kang ◽  
Kyung Tae Jung ◽  
Eun Jin Kim ◽  
Jae Kwi So ◽  
Jong Jin Park

Eos ◽  
2021 ◽  
Vol 102 ◽  
Author(s):  
Rishika Pardikar

A new study found significant increases in the intensity, frequency, and duration of cyclonic storms over the Arabian Sea. Is the west coast prepared?


2012 ◽  
Vol 6 (4) ◽  
pp. 3491-3501 ◽  
Author(s):  
P. W. Leclercq ◽  
A. Weidick ◽  
F. Paul ◽  
T. Bolch ◽  
M. Citterio ◽  
...  

Abstract. Past glacier fluctuations provide insight into glacier dynamics, climate change, and the contribution of glaciers to sea-level rise. Here, the length fluctuations since the 19th century of 18 local glaciers in West and South Greenland are presented, extending and updating the study by Weidick (1968). The studied glaciers all show an overall retreat with an average of 1.2 ± 0.2 km over the 20th century, indicating a general rise of the equilibrium line along the west coast of Greenland during the last century. The rate of retreat was largest in the first half of the 20th century.


2015 ◽  
Vol 12 (2) ◽  
pp. 1907-1973 ◽  
Author(s):  
T. J. Bohn ◽  
J. R. Melton ◽  
A. Ito ◽  
T. Kleinen ◽  
R. Spahni ◽  
...  

Abstract. Wetlands are the world's largest natural source of methane, a powerful greenhouse gas. The strong sensitivity of methane emissions to environmental factors such as soil temperature and moisture has led to concerns about potential positive feedbacks to climate change. This risk is particularly relevant at high latitudes, which have experienced pronounced warming and where thawing permafrost could potentially liberate large amounts of labile carbon over the next 100 years. However, global models disagree as to the magnitude and spatial distribution of emissions, due to uncertainties in wetland area and emissions per unit area and a scarcity of in situ observations. Recent intensive field campaigns across the West Siberian Lowland (WSL) make this an ideal region over which to assess the performance of large-scale process-based wetland models in a high-latitude environment. Here we present the results of a follow-up to the Wetland and Wetland CH4 Intercomparison of Models Project (WETCHIMP), focused on the West Siberian Lowland (WETCHIMP-WSL). We assessed 21 models and 5 inversions over this domain in terms of total CH4 emissions, simulated wetland areas, and CH4 fluxes per unit wetland area and compared these results to an intensive in situ CH4 flux dataset, several wetland maps, and two satellite inundation products. We found that: (a) despite the large scatter of individual estimates, 12 year mean estimates of annual total emissions over the WSL from forward models (5.34 ± 0.54 Tg CH4 y-1), inversions (6.06 ± 1.22 Tg CH4 y-1), and in situ observations (3.91 ± 1.29 Tg CH4 y-1) largely agreed, (b) forward models using inundation products alone to estimate wetland areas suffered from severe biases in CH4 emissions, (c) the interannual timeseries of models that lacked either soil thermal physics appropriate to the high latitudes or realistic emissions from unsaturated peatlands tended to be dominated by a single environmental driver (inundation or air temperature), unlike those of inversions and more sophisticated forward models, (d) differences in biogeochemical schemes across models had relatively smaller influence over performance; and (e) multi-year or multi-decade observational records are crucial for evaluating models' responses to long-term climate change.


Sign in / Sign up

Export Citation Format

Share Document