Sediment Cores from the East Pacific

1953 ◽  
Vol 75 (1) ◽  
pp. 115-118 ◽  
Author(s):  
G. Arrhenius
Keyword(s):  
1953 ◽  
Vol 61 (4) ◽  
pp. 385-386
Author(s):  
Ph. H. Kuenen
Keyword(s):  

2021 ◽  
Vol 9 ◽  
Author(s):  
Adrian Felix Höfken ◽  
Tilo von Dobeneck ◽  
Thomas Kuhn ◽  
Sabine Kasten

Recent measurements of pore-water oxygen profiles in ridge flank sediments of the East Pacific Rise revealed an upward-directed diffusive oxygen flux from the hydrothermally active crust into the overlying sediment. This double-sided oxygenation from above and below results in a dual redox transition from an oxic sedimentary environment near the seabed through suboxic conditions at sediment mid-depth back to oxic conditions in the deeper basal sediment. The potential impact of this redox reversal on the paleo- and rock magnetic record was analyzed for three sediment cores from the Clarion-Clipperton-Zone (low-latitude eastern North Pacific). We found that the upward-directed crustal oxygen flux does not impede high quality reversal-based and relative paleointensity-refined magnetostratigraphic dating. Despite low and variable sedimentation rates of 0.1–0.8 cm/kyr, robust magnetostratigraphic core chronologies comprising the past 3.4 resp. 5.2 million years could be established. These age-models support previous findings of significant local sedimentation rate variations that are probably related to the bottom current interactions with the topographic roughness of the young ridge flanks. However, we observed some obvious paleomagnetic irregularities localized at the lower oxic/suboxic redox boundaries of the investigated sediments. When analyzing these apparently remagnetized sections in detail, we found no evidence of physical disturbance or chemical alteration. A sharp increase in single-domain magnetite concentration just below the present lower oxic/suboxic redox boundary suggests secondary magnetite biomineralization by microaerophilic magnetotactic bacteria living as a separate community in the lower, upward oxygenated part of the sediment column. We therefore postulate a two-phased post-depositional remanent magnetization of ridge flank sediments, first by a shallow and later by a deep-living community of magnetotactic bacteria. These findings are the first evidence of a second, deep population of probably inversely oriented magnetotactic bacteria residing in the inverse oxygen gradient zone of ridge flank sediments.


2018 ◽  
Vol 17 (2) ◽  
pp. 169
Author(s):  
Luis G. Fonseca ◽  
Pilar Santidrián Tomillo ◽  
Wilbert N. Villachica ◽  
Wagner M. Quirós ◽  
Marta Pesquero ◽  
...  

Fact Sheet ◽  
1996 ◽  
Author(s):  
Peter C. Van Metre ◽  
Larry F. Land ◽  
C.L. Braun

1991 ◽  
Vol 26 (1) ◽  
pp. 1-16 ◽  
Author(s):  
T.P. Murphy ◽  
H. Brouwer ◽  
M.E. Fox ◽  
E. Nagy

Abstract Eighty-one sediment cores were collected to determine the extent of coal tar contamination in a toxic area of Hamilton Harbour. Over 800 samples were analyzed by a UV spectrophotometric technique that was standardized with gas chromatography/mass spectrometry analysis. The coal tar distribution was variable. The highest concentrations were near the Stelco outfalls and the Hamilton-Wentworth combined sewer outfalls. The total concentration of the 16 polynuclear aromatic hydrocarbons (PAHs) in 48,300 m3 of near-surface sediments exceeded 200 µg/g.


2008 ◽  
Vol 43 (2-3) ◽  
pp. 85-98 ◽  
Author(s):  
Joshua R. Thienpont ◽  
Brian K. Ginn ◽  
Brian F. Cumming ◽  
John P. Smol

Abstract Paleolimnological approaches using sedimentary diatom assemblages were used to assess water quality changes over the last approximately 200 years in three lakes from King's County, Nova Scotia. In particular, the role of recent shoreline development in accelerating eutrophication in these systems was assessed. Sediment cores collected from each lake were analyzed for their diatom assemblages at approximately 5-year intervals, as determined by 210Pb dating. Analyses showed that each system has changed, but tracked different ecosystem changes. Tupper and George lakes recorded shifts, which are likely primarily related to climatic warming, with diatom assemblages changing from a preindustrial dominance by Aulacoseira spp. to present-day dominance by Cyclotella stelligera. In addition to the recent climatic-related changes, further diatom changes in the Tupper Lake core between approximately 1820 and 1970 were coincident with watershed disturbances (farming, forestry, and construction of hydroelectric power infrastructure). Black River Lake has recorded an increase in diatom-inferred total phosphorus since about 1950, likely due to impoundment of the Black River system for hydroelectric generation and subsequent changes in land runoff. Before-and-after (i.e., top-bottom) sediment analyses of six other lakes from King's County provided further evidence that the region is being influenced by climatic change (decreases in Aulacoseira spp., increases in planktonic diatom taxa), as well as showing other environmental stressors (e.g., acidification). However, we recorded no marked increase in diatom-inferred nutrient levels coincident with shoreline cottage development in any of the nine study lakes. Paleolimnological studies such as these allow lake managers to place the current limnological conditions into a long-term context, and thereby provide important background data for effective lake management.


1989 ◽  
Vol 24 (1) ◽  
pp. 1-22 ◽  
Author(s):  
Alena Mudroch ◽  
K. Hill

Abstract Sediment cores were collected in Lake St. Clair in 1985 and in the St. Clair River in 1986 to investigate the horizontal and vertical distribution and association of Hg in the sediments. A layer of recent sediment up to about 35 cm thick was differentiated by the geochemical composition and visual appearance from the underlying glacial-lacustrine deposits. The concentration of Hg in the surficial sediments in Lake St. Clair was lower in 1985 (<0.025 to 1.200 µg/g) than that found in 1974 (<0.20 to 3.00 µg/g). Up to 8.30 µg/g of Hg were found in the sediments collected from the nearshore area at Sarnia, Ontario, in the St. Clair River in 1986. The concentrations of Hg ranged from 5.05 to 16.00 µg/g in different sand-sized fractions (0.063 to 0.350 mm) of the sediment. The concentration of Hg was 17.80 µg/g in the silt-clay size fraction (<0.063 mm). No relationship was found between the concentration of organic matter and Hg, and the concentration of silica and Hg in the St. Clair River sediments. The results indicated a relationship of Hg with particles of different mineralogical composition. Up to 3.72 µg/g Hg was found in the surface sediment in Chenal Ecarte. The greatest concentration of Hg (13.15 µg/g) existed in the 0.350 mm particle size fraction, which consisted mainly of small pieces of decaying wood. A good relationship was found between the concentration of Hg and organic matter in the sediment at this area.


Sign in / Sign up

Export Citation Format

Share Document