Patterns of arthropod abundance, vegetation, and microclimate at boreal forest edge and interior in two landscapes: Implications for forest birds

Ecoscience ◽  
2001 ◽  
Vol 8 (4) ◽  
pp. 454-461 ◽  
Author(s):  
Steve L. Van Wilgenburg ◽  
Daniel F. Mazerolle ◽  
Keith A. Hobson
2008 ◽  
Vol 122 (2) ◽  
pp. 129 ◽  
Author(s):  
Matthew E. Reiter ◽  
Clint W. Boal ◽  
David E. Andersen

Distribution, abundance, and habitat relationships of anurans inhabiting subarctic regions are poorly understood, and anuran monitoring protocols developed for temperate regions may not be applicable across large roadless areas of northern landscapes. In addition, arctic and subarctic regions of North America are predicted to experience changes in climate and, in some areas, are experiencing habitat alteration due to high rates of herbivory by breeding and migrating waterfowl. To better understand subarctic anuran abundance, distribution, and habitat associations, we conducted anuran calling surveys in the Cape Churchill region of Wapusk National Park, Manitoba, Canada, in 2004 and 2005. We conducted surveys along ~1-km transects distributed across three landscape types (coastal tundra, interior sedge meadow–tundra, and boreal forest–tundra interface) to estimate densities and probabilities of detection of Boreal Chorus Frogs (Pseudacris maculata) and Wood Frogs (Lithobates sylvaticus). We detected a Wood Frog or Boreal Chorus Frog on 22 (87%) of 26 transects surveyed, but probability of detection varied between years and species and among landscape types. Estimated densities of both species increased from the coastal zone inland toward the boreal forest edge. Our results suggest anurans occur across all three landscape types in our study area, but that species-specific spatial patterns exist in their abundances. Considerations for both spatial and temporal variation in abundance and detection probability need to be incorporated into surveys and monitoring programs for subarctic anurans.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2039 ◽  
Author(s):  
Marcela Suarez-Rubio ◽  
Todd R. Lookingbill

Housing development beyond the urban fringe (i.e., exurban development) is one of the fastest growing forms of land-use change in the United States. Exurban development’s attraction to natural and recreational amenities has raised concerns for conservation and represents a potential threat to wildlife. Although forest-dependent species have been found particularly sensitive to low housing densities, it is unclear how the spatial distribution of houses affects forest birds. The aim of this study was to assess forest bird responses to changes in the spatial pattern of exurban development and also to examine species responses when forest loss and forest fragmentation were considered. We evaluated landscape composition around North American Breeding Bird Survey stops between 1986 and 2009 by developing a compactness index to assess changes in the spatial pattern of exurban development over time. Compactness was defined as a measure of how clustered exurban development was in the area surrounding each survey stop at each time period considered. We used Threshold Indicator Taxa Analysis to detect the response of forest and forest-edge species in terms of occurrence and relative abundance along the compactness gradient at two spatial scales (400-m and 1-km radius buffer). Our results showed that most forest birds and some forest-edge species were positively associated with high levels of compactness at the larger spatial scale; the proportion of forest in the surrounding landscape also had a significant effect when forest loss and forest fragmentation were accounted for. In contrast, the spatial configuration of exurban development was an important predictor of occurrence and abundance for only a few species at the smaller spatial scale. The positive response of forest birds to compactness at the larger scale could represent a systematic trajectory of decline and could be highly detrimental to bird diversity if exurban growth continues and creates more compacted development.


2022 ◽  
pp. 1-9
Author(s):  
Samuel Novais ◽  
Vicente Hernández-Ortiz ◽  
Karla Rodríguez-Hernández ◽  
Mauricio Quesada ◽  
G. Wilson Fernandes ◽  
...  

Abstract The magnitude of facilitation by shelter-building engineers on community structure is expected to be greater when they increase limited resources in the environment. We evaluated the influence of local environmental context on the colonisation of leaf shelters by arthropods in a Mexican evergreen tropical rainforest. We compared the species richness and abundance of arthropods (total and for different guilds) colonising artificially rolled leaves in habitats differing in understory heterogeneity (forest edge > old-growth forests > living fences). Arthropod abundance of the most representative arthropod taxa (i.e., Araneae, Blattodea, Collembola and Psocoptera) colonising the rolled leaves was greater at forest edge, a trend also observed for average arthropod abundance, and for detritivore and predator guilds. In addition, fewer arthropod species and individuals colonised the rolled leaves in the living fence habitat, a trend also observed for most arthropod guilds. As forest edge is expected to have a greater arthropod diversity and stronger density-dependent interactions, a greater limitation of refuges from competitors or predators may have determined the higher colonisation of the rolled leaves in this habitat. Our results demonstrate that local environment context is an important factor that affects the colonisation of arthropods in leaf shelters.


2012 ◽  
Vol 39 (8) ◽  
pp. 1462-1472 ◽  
Author(s):  
Merja Elo ◽  
Jean-Michel Roberge ◽  
Ari Rajasärkkä ◽  
Mikko Mönkkönen

2003 ◽  
Vol 162 (3) ◽  
pp. 343-357 ◽  
Author(s):  
Lluís Brotons ◽  
Mikko Mönkkönen ◽  
Jean Louis Martin

2015 ◽  
Vol 343 ◽  
pp. 80-87 ◽  
Author(s):  
L.A. Venier ◽  
K. Dalley ◽  
P. Goulet ◽  
S. Mills ◽  
D. Pitt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document