Microstructure and mechanical behaviour of cold metal transfer welded Mg/Al dissimilar joint using wire AZ31 as filler metal

2016 ◽  
Vol 22 (4) ◽  
pp. 353-361 ◽  
Author(s):  
P. Wang ◽  
S. S. Hu ◽  
J. Q. Shen ◽  
Y. Liang
2019 ◽  
Vol 103 (5-8) ◽  
pp. 2485-2494
Author(s):  
Gustavo Henrique Truppel ◽  
Matthias Angerhausen ◽  
Alexandros Pipinikas ◽  
Uwe Reisgen ◽  
Luiz Eduardo dos Santos Paes

2012 ◽  
Vol 1381 ◽  
Author(s):  
A.F. Miranda Pérez ◽  
I. Calliari ◽  
K. Brunelli ◽  
F.A. Reyes Valdés ◽  
G. Y Pérez Medina

ABSTRACTEnvironmental, concerns regarding reducing CO2 emissions and the drive of having better fuel economy have already enthused the car manufacturer to use the weight materials having better mechanical properties. Automotive industry has shown a great interest in Dual Phase steels due to the possibility of reducing weight of vehicles and increasing the passenger safety at a very competitive cost. Automotive applications unavoidably entail welding and joining in the manufacturing process and the fatigue resistance of welded joints due to the integrity and safety requirements. The variation of welding parameters (voltage, current and speed of welding) affects weld performance, mechanical, and metallurgical properties.The CMT (Cold Metal Transfer) braze welding is a relatively new technology that partially decouples the arc electrical transients from the filler wire feed rate. It allows reducing the heat required for welding and permits higher joining speeds.The aim of this work is to study the interfacial microstructures and intermetallic compounds produced by cold metal transfer welding of two plates of galvanized DP600 dual phase steel with CuSi3 as filler metal. The study was performed by applying a CMT braze welding with three different joining speeds. The welded microstructures and microhardness were determined and related to the welding process conditions.A small HAZ, constituted by martensite, bainite and coarse ferrite grains, has been highlighted. Furthermore, an intermetallic Fe-Si-Cu compound layer formed at the interface between steel and filler metal. The joining speed sways the size of ZTA since the heat input Q affects the phase transformation in the weld and heat affected zoneThis parameter also affects the thickness of the compound layer and the size of precipitates in the filler metal, likewise the mechanical characteristics. The fracture starts at the interface steel-copper where intermetallic compounds formed.


2021 ◽  
pp. 102203
Author(s):  
Runsheng Li ◽  
Guilan Wang ◽  
Xushan Zhao ◽  
Fusheng Dai ◽  
Cheng Huang ◽  
...  

2019 ◽  
Vol 28 (1) ◽  
pp. 135-145 ◽  
Author(s):  
Addanki Ramaswamy ◽  
Sudersanan Malarvizhi ◽  
Visvalingam Balasubramanian

AbstractAluminium alloys of 6xxx series are widely used in the fabrication of light weight structures especially, where high strength to weight ratio and excellent weld-ability characteristics are desirable. Gas metal arc welding (GMAW) is the most predominantly used welding process in many industries due to the ease of automation. In this investigation, an attempt has been made to identify the best variant of GMAW process to overcome the problems like alloy segregation, precipitate dissolution and heat affected zone (HAZ) softening. Thin sheets of AA6061-T6 alloy were welded by cold metal transfer (CMT) and Pulsed CMT (PCMT). Among the two joints, the joint made by PCMT technique exhibited superior tensile properties due to the mechanical stirring action in the weld pool caused by forward and rearward movement of the wire along with the controllable diffusion rate at the interface caused by shorter solidification time. However, softening still exists in the welded joints. Further to increase the joint efficiency and to minimize HAZ softening, the joints were subjected to post weld heat treatment (PWHT). Approximately 10% improvement in the tensile properties had been observed in the PWHT joints due to the nucleation of strengthening precipitates in the weld metal and HAZ.


Sign in / Sign up

Export Citation Format

Share Document