scholarly journals Influence of post weld heat treatment on tensile properties of cold metal transfer (CMT) arc welded AA6061-T6 aluminium alloy joints

2019 ◽  
Vol 28 (1) ◽  
pp. 135-145 ◽  
Author(s):  
Addanki Ramaswamy ◽  
Sudersanan Malarvizhi ◽  
Visvalingam Balasubramanian

AbstractAluminium alloys of 6xxx series are widely used in the fabrication of light weight structures especially, where high strength to weight ratio and excellent weld-ability characteristics are desirable. Gas metal arc welding (GMAW) is the most predominantly used welding process in many industries due to the ease of automation. In this investigation, an attempt has been made to identify the best variant of GMAW process to overcome the problems like alloy segregation, precipitate dissolution and heat affected zone (HAZ) softening. Thin sheets of AA6061-T6 alloy were welded by cold metal transfer (CMT) and Pulsed CMT (PCMT). Among the two joints, the joint made by PCMT technique exhibited superior tensile properties due to the mechanical stirring action in the weld pool caused by forward and rearward movement of the wire along with the controllable diffusion rate at the interface caused by shorter solidification time. However, softening still exists in the welded joints. Further to increase the joint efficiency and to minimize HAZ softening, the joints were subjected to post weld heat treatment (PWHT). Approximately 10% improvement in the tensile properties had been observed in the PWHT joints due to the nucleation of strengthening precipitates in the weld metal and HAZ.

2020 ◽  
Vol 62 (1) ◽  
pp. 69-76
Author(s):  
Addanki Ramaswamy ◽  
Sudersanan Malarvizhi ◽  
Visvalingam Balasubramanian

Author(s):  
HaiYang Lei ◽  
YongBing Li ◽  
Blair E. Carlson ◽  
ZhongQin Lin

In order to meet the upcoming regulations on greenhouse gas emissions, aluminum use in the automotive industry is increasing. However, this increase is now seen as part of a multimaterial strategy. Consequently, dissimilar material joints are a reality, which poses significant challenges to conventional fusion joining processes. To address this issue, cold metal transfer (CMT) spot welding process was developed in the current study to join aluminum alloy AA6061-T6 as the top sheet to hot dip galvanized (HDG) advanced high strength steel (AHSS) DP590 as the bottom sheet. Three different welding modes, i.e., direct welding (DW) mode, plug welding (PW) mode, and edge plug welding (EPW) mode were proposed and investigated. The DW mode, having no predrilled hole in the aluminum top sheet, required concentrated heat input to melt through the Al top sheet and resulted in a severe tearing fracture, shrinkage voids, and uneven intermetallic compounds (IMC) layer along the faying surface, leading to poor joint properties. Welding with the predrilled hole, PW mode, required significantly less heat input and led to greatly reduced, albeit uneven, IMC layer thickness. However, it was found that the EPW mode could homogenize the welding heat input into the hole and thus produce the most stable welding process and best joint quality. This led to joints having an excellent joint morphology characterized by the thinnest IMC layer and consequently, best mechanical performance among the three modes.


Author(s):  
Kolton Landreth ◽  
Qi Li ◽  
Raghav Marwaha

Abstract Full-encirclement split tee fittings for hot tapping and plugging (HT&P) wrap completely around the pipeline and are welded in place. The welded joint provides mechanical reinforcement of the pipe and branch. When full-encirclement hot tap tees are welded to pipelines 24 inches in diameter or larger, the header must often be at least 1.25 inches thick to pass the required calculations for reinforcement. This means the joint will require post weld heat treatment (PWHT) according to ASME B31.8 and CSA Z662. However, PWHT can be extremely dangerous and impractical, potentially elevating temperature to the point where material strength of the pressurized pipeline is compromised. An engineering critical assessment per ASME FFS-1/API 579 indicated PWHT may not be required for a full-encirclement hot tap tee over 1.25 inches thick. Specifically, research showed that the residual stresses developed during the welding process may not limit the design of a full-encirclement tee or lead to shorter pipeline design life. This paper illustrates how a “more rigorous analysis” per paragraph 802.2.2[b] of ASME B31.8 and paragraph 4.3.12.2 of CSA Z662 may help operators avoid the PWHT requirement. It discusses the finite element analysis (FEA) simulations researchers used to induce residual stresses in a carbon steel fitting. The residual stresses induced in the fitting were used as initial condition for plastic collapse and fatigue evaluations.


Author(s):  
R Pramod ◽  
N Siva Shanmugam ◽  
CK Krishnadasan

Aluminium alloy 6061-T6 is utilized in aerospace industry for developing pressure vessel liner. Cold metal transfer is a promising welding process used in fabricating aluminium structures. The present work is focussed to achieve an optimum welding parameter for joining a 3.5-mm thick pressure vessel and to examine the mechanical properties and metallurgical nature of the weldment. The welded joint was evaluated as defect free using radiography test. The joint efficiency (66.61%) and measured microhardness of weldment (59.78 HV) exhibited promising results. The effect of grain coarsening in the heat affected zone (HAZ) and weld zone is attributed to the thermal gradients during welding. Dissipation of small amounts of strengthening elements Si and Mg during welding leads to reduction in mechanical properties. X-ray diffraction peaks revealed the presence of intermetallic Al–Si and Fe–Si in the weld zone. Fractography examination confirms the ductile type of failure in the fractured surface of the tensile samples.


2015 ◽  
Vol 809-810 ◽  
pp. 437-442
Author(s):  
Jacek Górka ◽  
Michał Miłoszewski

4330V is a high strength, high toughness, heat treatable low alloy steel for application in the oil, gas and aerospace industries. It is typically used for large diameter drilling parts where high toughness and strength are required. The research describes the effect of preheat temperature, interpass temperature, heat input, and post weld heat treatment on strength, hardness, toughness, and changes to microstructure in the weld joint. Welding with the lower heat input and no post weld heat treatment resulted in optimal mechanical properties in the weld metal. Austempering at 400 °C resulted in optimal mechanical properties in the HAZ. Increasing preheat and interpass temperature from 340 °C to 420 °C did not improve Charpy V-notch values or ultimate tensile strength in the weld metal or heat affected zones. The higher temperature increased the width of the heat affected zone. Austempering at 400 °C reduced HAZ hardness to a level comparable to the base metal. Both tempering and austempering at 400 °C for 10 hours reduced toughness in the weld metal.


2016 ◽  
Vol 658 ◽  
pp. 326-338 ◽  
Author(s):  
K. Devendranath Ramkumar ◽  
R. Ramanand ◽  
Ajmal Ameer ◽  
K. Aghil Simon ◽  
N. Arivazhagan

Sign in / Sign up

Export Citation Format

Share Document