Mechanical properties of low-transformation-temperature weld metals after low-temperature postweld heat treatment

2018 ◽  
Vol 24 (2) ◽  
pp. 112-120 ◽  
Author(s):  
Shipin Wu ◽  
Dongpo Wang ◽  
Zhi Zhang ◽  
Chengning Li ◽  
Xiuguo Liu ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Sheida Sarafan ◽  
Priti Wanjara ◽  
Jean-Benoît Lévesque ◽  
Javad Gholipour ◽  
Henri Champliaud ◽  
...  

In this study, the integrity of electron beam- (EB-) welded CA6NM—a grade of 13% Cr-4% Ni martensitic stainless steel—was assessed through the entire joint thickness of 90 mm after postweld heat treatment (PWHT). The joints were characterized by examining the microstructure, residual stresses, global mechanical properties (static tensile, Charpy impact, and bend), and local properties (yield strength and strain at fracture) in the metallurgically modified regions of the EB welds. The applied PWHT tempered the “fresh” martensite present in the microstructure after welding, which reduced sufficiently the hardness (<280 HV) and residual stresses (<100 MPa) to meet the requirements for hydroelectric turbine assemblies. Also, the properties of the EB joints after PWHT passed the minimum acceptance criteria specified in ASME sections VIII and IX. Specifically, measurement of the global tensile properties indicated that the tensile strengths of the EB welds in the transverse and longitudinal directions were on the same order as that of the base metal (BM). Evaluation of the local tensile properties using a digital image correlation (DIC) methodology showed higher local yield strengths in the fusion zone (FZ) and heat-affected zone (HAZ) of 727 MPa and 740 MPa, respectively, relative to the BM value of 663 MPa. Also, the average impact energies for the FZ and HAZ were 63 J and 148 J, respectively, and attributed to the different failure mechanisms in the HAZ (dimples) versus the FZ (quasi-cleavage consisting of facets and dimples). This study shows that the application of PWHT plays an important role in improving the weld quality and performance of EB-welded CA6NM and provides the essential data for validating the design and manufacturing process for next-generation hydroelectric turbine products.


2013 ◽  
Vol 315 ◽  
pp. 6-10 ◽  
Author(s):  
S.M. Manladan ◽  
B.O. Onyekpe

This paper presents the result of an investigation of the effect of postweld heat treatment on the mechanical properties of weld in 0.36%C medium Carbon Steel. Samples were prepared and welded using Shielded Metal Arc Welding (SMAW) process with a low hydrogen electrode. The welded samples were subjected to postweld heat treatment (stress relief) at four different temperatures: 550°C, 600°C, 650°C and 700°C followed by air-cooling. Microstructural examination was carried out to determine the change in microstructure before and after postweld heat treatment. The mechanical properties of the samples were also tested before and after the heat treatment. It was established that a hard microstructure, susceptible to Hydrogen Induced Cracking (HIC), was formed in the heat affected zone of the as-welded samples and that postweld heat treatment improved the mechanical properties of the weld and substantially reduced or eliminated the risk of HIC.


2022 ◽  
Vol 2152 (1) ◽  
pp. 012018
Author(s):  
Qi Feng ◽  
Hongtu Song

Abstract Based on the analysis of operation methods of rail welding and postweld heat treatment in the track change overhaul of existing railway lines at home and abroad, this paper puts forward the existing problems in the operation methods of off-line welding and on-line welding in China, and puts forward the solutions to the existing problems. When this operation mode is used for on-line welding, it can reduce the quality risk in the heat treatment process of low-temperature locking joint; in case of broken track and urgent repair of broken track, this method can eliminate secondary shunting and facilitate the recovery of the line as soon as possible.


Sign in / Sign up

Export Citation Format

Share Document