Eurocode 8 Compliant Real Record Sets for Seismic Analysis of Structures

2008 ◽  
Vol 12 (1) ◽  
pp. 54-90 ◽  
Author(s):  
Iunio Iervolino ◽  
Giuseppe Maddaloni ◽  
Edoardo Cosenza
Keyword(s):  
2014 ◽  
Vol 8 (1) ◽  
pp. 104-121 ◽  
Author(s):  
T. O. Tang ◽  
R. K.L. Su

Seismic analyses of concrete structures under maximum-considered earthquakes require the use of reduced stiffness accounting for cracks and degraded materials. Structural walls, different to other flexural dominated components, are sensitive to both shear and flexural stiffness degradations. Adoption of the gross shear stiffness for walls in seismic analysis prevails particularly for the design codes in the US. Yet available experimental results indicate that this could overstate the shear stiffness by more than double, which would hamper the actual predictions of building periods and shear load distributions among columns and walls. In addition, the deformation capacity could be drastically understated if the stipulated constant ductility capacity is adopted. This paper reviews the available simplified shear and flexural models, which stem from classical mechanics, empirical formulations and/or parametric studies, suitable for structural walls at the state-of-the-art. Reviews on the recommended flexural and shear stiffnesses by prominent design codes such as ACI318-11, Eurocode 8 and CSA are included. A database comprised of walls subjected to reverse-cyclic loads is formed to evaluate the performance of each model. It is found that there exist classical models that could outweigh overconservative codified values with comparable simplicity for practical uses.


2009 ◽  
Vol 13 (8) ◽  
pp. 1125-1152 ◽  
Author(s):  
Iunio Iervolino ◽  
Giuseppe Maddaloni ◽  
Edoardo Cosenza

2020 ◽  
Vol 18 (2) ◽  
pp. 203-217
Author(s):  
Dragan Zlatkov ◽  
Slavko Zdravkovic ◽  
Biljana Mladenovic ◽  
Marina Mijalkovic

Up to date research has pointed out that most of the structural connections of reinforced concrete (RC) frames, particularly precast ones, behave as semi-rigid. Therefore, it is of great importance to develop an analysis method which takes into account the connection rigidity. For that purpose matrix formulation of the deformation method is used in this paper, and the effect of rigidity of connections on the structure response is included by stiffness matrix for semi-rigidly connected member. The elements of this matrix are functions of the fixity factors at the ends of members. The proposed method is applied in seismic analysis of the precast RC frame structure of the existing industrial hall according to Eurocode 8 (EC8).


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
V. Alecci ◽  
M. De Stefano ◽  
S. Galassi ◽  
M. Lapi ◽  
M. Orlando

The European seismic code 8 (Eurocode 8) classifies buildings as planwise regular according to four criteria which are mostly qualitative and a fifth one, which is based on parameters such as stiffness, eccentricity, and torsional radius, that can be only approximately defined for multistory buildings. Therefore, such plan-regularity criteria are in need of improvement. ASCE seismic code, according to a different criterion, considers plan (or “torsional”) irregularity in a building when the maximum story drift, at one end of the structure, exceeds more than 1.2 times the average of the story drifts at the two ends of the structure under equivalent static analysis. Nevertheless, both the ASCE approach and the threshold value of 1.2 need to be supported by adequate background studies, based also on nonlinear seismic analysis. In this paper, a numerical analysis is carried out, by studying the seismic response of an existing R/C school building taken as the reference structure. Linear static analysis is developed by progressively shifting the centre of mass, until the ratio between the maximum lateral displacement of the floor at the level is considered and the average of the horizontal displacements at extreme positions of the floor at the same level matches and even exceeds the value of 1.2. Then, nonlinear dynamic analyses are carried out to check the corresponding level of response irregularity in terms of uneven plan distribution of deformation and displacement demands and performance parameters. The above comparison leads to check the suitability of the ASCE approach and, in particular, of the threshold value of 1.2 for identifying buildings plan irregularity.


2019 ◽  
Vol 12 (5) ◽  
pp. 1220-1247
Author(s):  
R. A. RODRIGUES ◽  
C. E. N. MAZZILLI ◽  
T. N. BITTENCOURT

Abstract The main objective of this work is to carry out a comparative analysis between the methods and provisions of the Brazilian code ABNT NBR 15421:2006 and those of the ASCE/SEI 7 and the Eurocode 8, on the seismic design of structures. The similarities and differences between these standards, as far as the application of the Equivalent Lateral Forces method (ELFM) and the Response Spectrum method (RSM) are concerned, will be addressed. The responses will be evaluated for a case study that will be modelled by the SCIA Engineer 17 software. This paper also presents some comments on the detailing of reinforced concrete structures to ensure a good performance under seismic loading, allowing for a more favourable interpretation of the seismic analysis results.


2017 ◽  
Vol 13 ◽  
pp. 20 ◽  
Author(s):  
Petr Čada ◽  
Jiří Máca

This paper investigates effects of the seismic load to a structure. The article describes main methods of the definition and practical application of the seismic load based on the Standard Eurocode 8. There was made a comparison of all methods using the same structure. A simple two-storeyed concrete 2D-frame with fixed joints was chosen. A one another model with rigid beams for some calculations was defined. The second model can be used for hand-calculations as a cantilever with two masses. The paper describes main dynamic properties of the chosen structure. Seismic load was defined by lateral force method, modal response spectrum, non-linear time-history analysis and pushover analysis. The time-history analysis is represented by accelerograms. There were made linear and non-linear calculations.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Harsh Bohra ◽  
Eyas Azzuni ◽  
Sukru Guzey

The behavior of aboveground storage tanks subjected to seismic excitation was investigated using numerical methods by taking flexibility of foundation into account. The hydrostatic load due to stored liquid has an axisymmetric distribution on the tank shell and base. However, during seismic events, the hydrodynamic load originating from the seismic acceleration of liquid in the tank starts to act in the direction of the earthquake motion. This leads to a nonaxisymmetric loading distribution, which may result in buckling and uplifting of the tank structure. Finite element models were created having nonlinear material properties and large deformation capabilities. Three different tank geometries with liquid height to tank radius aspect ratios of 0.67, 1.0, and 3.0 were selected representing broad, nominal, and slender tanks. These tanks were subjected to two different hydrodynamic loading based on Housner's and Jacobsen–Veletsos' pressure distributions, which forms the basis of design provisions used in American Petroleum Institute API 650 and Eurocode 8, respectively. These pressure distributions were formulated under the assumption of rigid tank wall and base. Furthermore, each tank for a given geometry was subjected to two different foundations: (1) representing a rigid foundation and (2) representing a flexible foundation. The flexible foundation was created using a series of compression-only elastic springs attached to tank base having equivalent soil stiffness. Static analysis corresponding to maximum dynamic force was performed. The finite element results for circumferential and longitudinal stress in the shell were compared with the provisions of API 650. It was found that the effect of foundation flexibility from the practical design point of view may be neglected for broad tanks, but should be considered for nominal and slender tanks.


Buildings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 210
Author(s):  
João M.C. Estêvão ◽  
Carlos Esteves

The seismic assessment of existing school buildings is an important issue in earthquake prone regions; such is the case of the Algarve, which is the southern region of Portugal mainland. Having this problem in mind, the PERSISTAH project (Projetos de Escolas Resilientes aos SISmos no Território do Algarve e de Huelva, in Portuguese) aimed to develop a computational approach enabling the damage evaluation of a large number of individual school buildings. One of the school typologies assessed was the so-called “P3” schools. This typology is composed of several different modules that are combined in different manners depending on the number of students. Each module was built in accordance with architectural standardised designs. For this reason, there are many replicas of these modules all over the Algarve region. The structural system of each module is composed of a frame of reinforced concrete (RC) elements. Nonlinear static seismic analysis procedures were adopted to evaluate the structural seismic behaviour, namely by using the new concept of performance curve. Based on the obtained results, it was possible to conclude that the seismic safety of this type of school building is mainly ruled by the shear capacity of the columns. This study also shows the difficulties of carrying out accurate seismic assessments of existing buildings using the methods of analysis that are established in the Eurocode 8.


Sign in / Sign up

Export Citation Format

Share Document