Study on Low-Frequency Characterizations of Pulse-Type Ground Motions through Multi-Resolution Analysis

2016 ◽  
Vol 20 (6) ◽  
pp. 1011-1033 ◽  
Author(s):  
Guo-Chen Zhao ◽  
Longjun Xu ◽  
Lili Xie
2021 ◽  
pp. 002029402110130
Author(s):  
Guan Chen ◽  
Zhiren Zhu ◽  
Jun Hu

This study proposed a simple and effective response spectrum-compatible ground motions simulation method to mitigate the scarcity of ground motions on seismic hazard analysis base on wavelet-based multi-resolution analysis. The feasibility of the proposed method is illustrated with two recorded ground motions in El Mayor-Cucapah earthquake. The results show that the proposed method enriches the ground motions exponentially. The simulated ground motions agree well with the attenuation characteristics of seismic ground motion without modulating process. Moreover, the pseudo-acceleration response spectrum error between the recorded ground motion and the average of the simulated ground motions is 5.2%, which fulfills the requirement prescribed in Eurocode 8 for artificially simulated ground motions. Besides, the cumulative power spectra between the simulated and recorded ground motions agree well on both high- and low-frequency regions. Therefore, the proposed method offers a feasible alternative in enriching response spectrum-compatible ground motions, especially on the regions with insufficient ground motions.


2013 ◽  
Vol 385-386 ◽  
pp. 1389-1393 ◽  
Author(s):  
Lin Chai ◽  
Jun Ru Sun

Extracting voltage flicker from the sampling voltage signal is a precondition for management of flicker. Voltage flicker signal is a low frequency time-varying non-stationary signal. The traditional fourier transform has great limitations when analyze the non-stationary signal for not having the time resolution. As wavelet transform has good property of time-frequency localization, it become a powerful tool for analyze this kind of signal. This paper adopts multi-resolution analysis of wavelet to extract voltage flicker signal. Furthermore, according to the characteristics of wavelet function, this paper selects Daubechies wavelet to accomplish the multi-level decomposition and reconstruction of signal, in order to get the frequency and amplitude of voltage flicker signals. Based on the principle of modulus maximum, it can be determined what time the voltage flicker happen and over. The results of MATLAB simulation indicate that voltage flicker signal can be effectively extracted by wavelet multi-resolution analysis. Wavelet multi-resolution analysis is considerably ideal for voltage flicker extraction.


2018 ◽  
pp. 110-128 ◽  
Author(s):  
Mahesh Kumar H. Kolekar ◽  
G. Lloyds Raja ◽  
Somnath Sengupta

This chapter gives a brief introduction of wavelets and multi-resolution analysis. Wavelets overcome the limitations of Discrete Cosine Transform and hence found its application in JPEG 2000. In wavelet transform, the scaling functions provide approximations or low-pass filtering of the signal and the wavelet functions add the details at multiple resolutions or perform high-pass filtering of the signal. Applying Discrete Wavelet Transform to an image decomposes it into LL, LH, HL, and HH subbands. The low frequency LL band carries most of the significant information in the image. Wavlet transform allows us to analyse the local properties of a signal or image by shifting and scaling operations. The inherent properties of wavelets makes it useful in image denoising, edge detection, image compression, compressed sensing and illumination normalization. The wavelet coefficients at various levels of decomposition follows a parent-child relationship.


Author(s):  
Mahesh Kumar H. Kolekar ◽  
G. Lloyds Raja ◽  
Somnath Sengupta

This chapter gives a brief introduction of wavelets and multi-resolution analysis. Wavelets overcome the limitations of Discrete Cosine Transform and hence found its application in JPEG 2000. In wavelet transform, the scaling functions provide approximations or low-pass filtering of the signal and the wavelet functions add the details at multiple resolutions or perform high-pass filtering of the signal. Applying Discrete Wavelet Transform to an image decomposes it into LL, LH, HL, and HH subbands. The low frequency LL band carries most of the significant information in the image. Wavlet transform allows us to analyse the local properties of a signal or image by shifting and scaling operations. The inherent properties of wavelets makes it useful in image denoising, edge detection, image compression, compressed sensing and illumination normalization. The wavelet coefficients at various levels of decomposition follows a parent-child relationship.


Author(s):  
Jude I. Aneke ◽  
O. A. Ezechukwu ◽  
P. I. Tagboh

This paper proposes a fault (line-to-line) location on Ikeja West – Benin 330kV electric power transmission lines using wavelet multi-resolution analysis and neural networks pattern recognition abilities. Three-phase line-to-line current and voltage waveforms measured during the occurrence of a fault in the power transmission-line were pre-processed first and then decomposed using wavelet multi-resolution analysis to obtain the high-frequency details and low-frequency approximations. The patterns formed based on high-frequency signal components were arranged as inputs of the neural network, whose task is to indicate the occurrence of a fault on the lines. The patterns formed using low-frequency approximations were arranged as inputs of the second neural network, whose task is to indicate the exact fault type. The new method uses both low and high-frequency information of the fault signal to achieve an exact location of the fault. The neural network was trained to recognize patterns, classify data and forecast future events. Feed forward networks have been employed along with back propagation algorithm for each of the three phases in the Fault location process. An analysis of the learning and generalization characteristics of elements in power system was carried using Neural Network toolbox in MATLAB/SIMULINK environment. Simulation results obtained demonstrate that neural network pattern recognition and wavelet multi-resolution analysis approach are efficient in identifying and locating faults on transmission lines as the average percentage error in fault location was just 0.1386%. This showed that satisfactory performance was achieved especially when compared to the conventional methods such as impedance and travelling wave methods.


Author(s):  
Ling-Kun Chen ◽  
Peng Liu ◽  
Li-Ming Zhu ◽  
Jing-Bo Ding ◽  
Yu-Lin Feng ◽  
...  

Near-fault (NF) earthquakes cause severe bridge damage, particularly urban bridges subjected to light rail transit (LRT), which could affect the safety of the light rail transit vehicle (“light rail vehicle” or “LRV” for short). Now when a variety of studies on the fault fracture effect on the working protection of LRVs are available for the study of cars subjected to far-reaching soil motion (FFGMs), further examination is appropriate. For the first time, this paper introduced the LRV derailment mechanism caused by pulse-type near-fault ground motions (NFGMs), suggesting the concept of pulse derailment. The effects of near-fault ground motions (NFGMs) are included in an available numerical process developed for the LRV analysis of the VBI system. A simplified iterative algorithm is proposed to assess the stability and nonlinear seismic response of an LRV-reinforced concrete (RC) viaduct (LRVBRCV) system to a long-period NFGMs using the dynamic substructure method (DSM). Furthermore, a computer simulation software was developed to compute the nonlinear seismic responses of the VBI system to pulse-type NFGMs, non-pulse-type NFGMs, and FFGMs named Dynamic Interaction Analysis for Light-Rail-Vehicle Bridge System (DIALRVBS). The nonlinear bridge seismic reaction determines the impact of pulses on lateral peak earth acceleration (Ap) and lateral peak land (Vp) ratios. The analysis results quantify the effects of pulse-type NFGMs seismic responses on the LRV operations' safety. In contrast with the pulse-type non-pulse NFGMs and FFGMs, this article's research shows that pulse-type NFGM derail trains primarily via the transverse velocity pulse effect. Hence, this study's results and the proposed method can improve the LRT bridges' seismic designs.


2021 ◽  
Vol 65 (4) ◽  
pp. 953-998
Author(s):  
Mark A. Iwen ◽  
Felix Krahmer ◽  
Sara Krause-Solberg ◽  
Johannes Maly

AbstractThis paper studies the problem of recovering a signal from one-bit compressed sensing measurements under a manifold model; that is, assuming that the signal lies on or near a manifold of low intrinsic dimension. We provide a convex recovery method based on the Geometric Multi-Resolution Analysis and prove recovery guarantees with a near-optimal scaling in the intrinsic manifold dimension. Our method is the first tractable algorithm with such guarantees for this setting. The results are complemented by numerical experiments confirming the validity of our approach.


Sign in / Sign up

Export Citation Format

Share Document