Novel current mode universal filter and dual-mode quadrature oscillator using VDCC and all grounded passive elements

2019 ◽  
Vol 16 (4) ◽  
pp. 220-236 ◽  
Author(s):  
Manish Gupta ◽  
Priyanka Dogra ◽  
Tajinder Singh Arora
2021 ◽  
Vol 25 (2) ◽  
pp. 65-76
Author(s):  
Tajinder Singh Arora ◽  

This research article explores the possible applications of voltage differencing current conveyor (VDCC), as a current mode universal filter and a sinusoidal oscillator. Without the need for an additional active/passive element, a very simple hardware modification makes it a dual-mode quadrature oscillator from the filter configuration. Both the proposed circuit requires only two VDCC and all grounded passive elements, hence a preferable choice for integration. The filter has some desirable features such as availability of all five explicit outputs, independent tunability of filter parameters. Availability of explicit quadrature current outputs, independence in start and frequency of oscillations, makes it a better oscillator design. Apart from prevalent CMOS simulation results, VDCC is also realized and experimentally tested using the off-the-shelf integrated circuit. All the pen and paper analysis such as non-ideal, sensitivity and parasitic analysis supports the design.


2019 ◽  
Vol 28 (11) ◽  
pp. 1950181 ◽  
Author(s):  
Tajinder Singh Arora ◽  
Bhargavi Rohil ◽  
Soumya Gupta

This paper proposes a current mode universal filter circuit, employing two active elements along with four grounded passive components only. The derived circuit realizes all five filtering responses, i.e., low pass (LP), band pass (BP), high pass (HP), band reject (BR) and all pass (AP), simultaneously from high-impedance ports along with the input being fed to low-impedance port, thus making it a fully cascadable filter. In addition, the designed circuit exhibits independent tunability of its quality factor. With the idea of making the proposed filter fully integrable, a resistor-less approach of the configuration has also been discussed. By making slight modifications in the filter configuration, a current mode single-resistance-controlled quadrature oscillator circuit has also been derived. The ideal, nonideal, sensitivity and parasitic analysis have been conducted for the designed configurations. The functionality of the proposed structures is verified by PSPICE simulations using 0.18[Formula: see text][Formula: see text]m CMOS technology. The designs have also been verified using PSPICE macro-model of the commercially available IC, i.e., OPA860.


2009 ◽  
Vol 2009 ◽  
pp. 1-5 ◽  
Author(s):  
Jiun-Wei Horng

This paper describes a current-mode third-order quadrature oscillator based on current differencing transconductance amplifiers (CDTAs). Outputs of two current-mode sinusoids with90°phase difference are available in the quadrature oscillator circuit. The oscillation condition and oscillation frequency are orthogonal controllable. The proposed circuit employs only grounded capacitors and is ideal for integration. Simulation results are included to confirm the theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document