Resilient modulus modeling of unsaturated subgrade soils with matric suction control

2014 ◽  
pp. 1145-1154
Author(s):  
Farhad Salour ◽  
Sigurdur Erlingsson ◽  
Claudia Zapata
2014 ◽  
Vol 51 (12) ◽  
pp. 1413-1422 ◽  
Author(s):  
Farhad Salour ◽  
Sigurdur Erlingsson ◽  
Claudia E. Zapata

The resilient modulus of unbound materials is an important parameter in the mechanistic design of pavements. Although unbound layers are frequently in a partially saturated state, a total stress approach is conventionally used in modeling the material behaviour, and therefore pore pressure effects are not considered. In fine-grained unbound materials, the saturation state can affect their mechanical behaviour due to pore pressure effects. In this study a modified test procedure and a predictive resilient modulus model that takes into account the subgrade soil matric suction as a stress state variable is presented. Two different silty sand subgrade materials were tested in unsaturated conditions using a series of repeated load triaxial tests under controlled pore suction conditions to study its influence on the resilient modulus. The test data were further used to obtain the resilient modulus model regression parameters that account for moisture content variations through the matric suction parameter. Generally, the prediction model could effectively capture the resilient modulus behaviour of the subgrades with respect to changes in the normal stress state and the matric suction. Given the completeness of this method, this prediction model is recommended as an improved approach in capturing the moisture content effects on the material stiffness properties.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xuanxuan Chu

Considering the great contribution of subgrade modulus to the overall performance of roads or railways, it is crucial to provide the best prediction of resilient modulus for their foundations. Incorporating the seasonal variation of moisture content, the resilient modulus variation of unsaturated soils will be accurately predicted. This paper aims to introduce and discuss the knowledge about resilient response of unsaturated soils and emphasize the effects of humidity. A literature review on resilient response of unsaturated soils is presented based on the previous studies. The affecting factors (i.e., wetting and drying, moisture content, and matric suction) were discussed. The prediction model development of the resilient response of unsaturated soils was presented. The limitations and advantages of the model were analyzed and compared. It reveals that the current models were limited regarding stress conditions, moisture content, matric suction, and soil types, and further studies are still needed to achieve a better understanding of resilient response of unsaturated soils.


Author(s):  
Shu-Rong Yang ◽  
Wei-Hsing Huang ◽  
Yu-Tsung Tai

The variations of resilient modulus with the postconstruction moisture content and soil suction for cohesive subgrade soils were evaluated. In particular, the effects of relative compaction of the subgrade on the suction and resilient modulus were investigated. To simulate subgrade soils at in-service conditions, soil specimens were compacted at various relative compactions and optimum moisture content and then saturated to equilibrium moisture content to test for resilient modulus and soil suction. The filter paper method was used to measure the total and matric suctions of two cohesive soils. Test findings demonstrated that resilient modulus correlated better with the matric suction than with total suction. Matric suction was found to be a key parameter for predicting the resilient modulus of cohesive subgrade soils. A prediction model incorporating deviator stress and matric suction for subgrade soil resilient modulus was established.


Author(s):  
Andrew G. Heydinger

One objective of the FHWA’s Long-Term Pavement Performance (LTPP) program is to determine climatic effects on pavement performance. The LTPP instrumentation program includes seasonal monitoring program (SMP) instrumentation to monitor the seasonal variations of moisture, temperature, and frost penetration. Findings from the SMP instrumentation are to be incorporated into future pavement design procedures. Data from SMP instrumentation at the Ohio Strategic Highway Research Program Test Road (US-23, Delaware County, Ohio) and other reported results were analyzed to develop empirical equations. General expressions for the seasonal variations of average daily air temperature and variations of temperature and moisture in the fine-grained subgrade soil at the test site are presented. An expression for the seasonal variation of resilient modulus was derived. Average monthly weighting factors that can be used for pavement design were computed. Other factors such as frost penetration, depth of water table, and drainage conditions are discussed.


2020 ◽  
Vol 32 (9) ◽  
pp. 06020011
Author(s):  
Behnam Ghorbani ◽  
Arul Arulrajah ◽  
Guillermo Narsilio ◽  
Suksun Horpibulsuk ◽  
Myint Win Bo

Sign in / Sign up

Export Citation Format

Share Document