Wind and buoyancy driven natural ventilation in double skin façades

Author(s):  
Alessandro Dama ◽  
Diego Angeli
2016 ◽  
Vol 861 ◽  
pp. 537-544 ◽  
Author(s):  
Christian Tauber ◽  
Egzon Bajraktari ◽  
Josef Lechleitner ◽  
Ulrich Pont ◽  
Ardeshir Mahdavi

Within an ongoing project, we explore the potential of double skin facades to provide both noise control and natural ventilation capability. Three strategies are investigated: i) Manipulation of sound paths via offset of the openings in the two shells of the façade; ii) Application of absorbing materials in the interstitial space of the façade; iii) Active noise cancelling methods utilizing wave-destructive interference. This contribution describes the overall project but focuses primarily on the active noise cancellation approach. Aside from a comprehensive background research on existing technology, we undertook the design of an actual setting for noise cancellation testing with suitable low-cost components as a proof-of-concept. Results of the experiments are expected to inform subsequent efforts to include noise-cancelling technology in double skin facades.


Author(s):  
Barbara Siebert ◽  
Geralt Siebert

<p>In terms of rehabilitation of existing buildings, a new façade is often planned and build to make the building more sustainable. In more and more cases, not only new windows, but also completely new façades and even so-called double skin facades are being constructed. This second skin has several advantages like sound protection, possibility of natural ventilation, contribution to energy balance and others. The paper will give basic requirements and information about this type of facade. One recently realized project is a high rise building of more than 100m height in Munich, listed as a historic building – so additional attention to optical appearance was necessary. And moreover, curved insolation glass units had to be used; since there are no regulations, special theoretical investigations and calculations had to be carried out.</p>


Author(s):  
Yao Tao ◽  
Xiang Fang ◽  
Michael Yit Lin Chew ◽  
Lihai Zhang ◽  
Jiyuan Tu ◽  
...  

2013 ◽  
Vol 787 ◽  
pp. 711-716
Author(s):  
Daryanto ◽  
Eko Budihardjo ◽  
Wahyu Setyabudi ◽  
Gagoek Hardiman

There was an indication that high rise buildings in Jakarta was not designed based on energy conservation principles. The most important aspects of the high-rise buildings is energy saving technology located in the building envelope design. Building envelope with a full glass design functions for widening view and enhancing natural lights, even though but it is also increasing energy consumption and thermal discomfort due to the intensity of solar radiation in hot humid climates. During the current decade, the development of double building envelope type (Double Skin Façade: DSF) seemed more just to improve the aesthetics and the use of natural light, while the wind and thermal performance aspects were still lack of serious consideration. Those aspects will be chosen as the subject matter in this research. The research was aimed to investigate and compare the value of heat transfer in the building envelope of high-rise office buildings. Samples were taken from five DSF buildings, with closed and open cavity. CFD software is used for simulation of the five different models of DSF. The research proves that the high-rise office buildings as the research object in Jakarta do not apply energy conservation principle. The utilization of wind in the DSF cavity can reduce temperature and relieve the burden of air conditioning systems that is energy save. An important finding of the research is the need for ventilation in the design of a double skin at high-rise office buildings in the humid tropics.


2021 ◽  
Vol 13 (9) ◽  
pp. 5027
Author(s):  
Wenjie Zhang ◽  
Tongdan Gong ◽  
Shengbing Ma ◽  
Jianwei Zhou ◽  
Yingbo Zhao

In building integrated photovoltaics (PV), it is important to solve the heat dissipation problem of PV modules. In this paper, the computational fluid dynamics (CFD) method is used to simulate the flow field around the open-joint photovoltaic ventilated double-skin façades (OJ-PV-DSF) to study the influence of the mounting dimensions (MD) of a PV array on the module temperature. The typical summer afternoon meteorological parameters, such as the total radiation (715.4 W/m2), the outdoor temperature (33.1 °C), and the wind speed (2.0 m/s), etc., are taken as input parameters. With the DO (discrete ordinates) model and the RNG (renormalization-group) k − ε model, a steady state calculation is carried out to simulate the flow of air in and around the cavity under the coupling of hot pressure and wind pressure, thereby obtaining the temperature distribution of the PV array and the wall. In addition, the simulation results are compared with the onsite experimental data and thermal imaging to verify the accuracy of the CFD model. Then three MD of the open joints are discussed. The results show that when the a value (represents the distance between PV modules and wall) changes from 0.05 to 0.15, the temperature drop of the PV module is the most obvious, reaching 2.0 K. When the b value (representing the distance between two adjacent PV modules in the vertical direction) changes from 0 to 0.1, the temperature drop of the PV module is most obvious, reaching 1 K. When the c value (represents the distance between two adjacent PV modules in the horizontal direction) changes from 0 to 0.1, the temperature of the PV module is lowered by 0.8 K. Thus, a = 0.1–0.15, b = 0.1 and c = 0.1 are recommended for engineering applications to effectively reduce the module temperature.


2021 ◽  
Vol 69 (3) ◽  
pp. 220-228
Author(s):  
Jeehwan Lee ◽  
Jae D. Chang ◽  
Robert Coffeen

A prior study of the acoustical performance of a double-skin facade (DSF) as a noise barrier was carried out based on the percentage of the air vent open surface area, shading louver configurations, and shading louver surface materials. Earlier research findings led to experimental investigations of the acoustical performance capabilities of compact silencers to replace DSF air vents as both noise barriers and air channels because DSF air cavities, which contribute to natural ventilation performance (e.g., wind-driven or buoyancy-driven performance), are acoustically vulnerable to noise transmitted through the air vents. This experimental investigation aims to explore noise reduction (NR) through compact silencers applied to DSF air vents. Double-skin facade mock-up test cases were designed based on three test scenarios of a ventilation open surface area: (1) a 100%air vent open surface area (open mode), (2) a 0% air vent open surface area (closed mode), and (3) a compact silencer. From a data analysis of DSF mock-up test results, the overall NR values of a DSFmock-up ranged from20 to 37 dB(A) depending on the number of compact silencers and the shading louver orientation used. Configurations of compact silencers and shading louvers helped the DSF mock-up achieve additionalNR values of 5 to 10 dB(A) depending on the test case. Moreover, applying compact silencers to a naturally ventilated DSF mock-up led to significant noise reduction at low frequencies (125Hz).


ce/papers ◽  
2018 ◽  
Vol 2 (5-6) ◽  
pp. 103-112
Author(s):  
Fabian Schmid ◽  
Xenia Cseh ◽  
Emil Rohrer ◽  
Martien Teich

Sign in / Sign up

Export Citation Format

Share Document