Influence of placement and height of high-rise buildings on wind pressure distribution and natural ventilation of low- and medium-rise buildings

Author(s):  
Sergey Kuznetsov ◽  
Alla Butova ◽  
Stanislav Pospíšil
2021 ◽  
Vol 7 (10) ◽  
pp. 1787-1805
Author(s):  
Arun Kumar ◽  
Ritu Raj

This paper aims to study the wind flow characteristics and to analyze the wind pressure distribution on the surfaces around an irregular octagonal plan shape building model. There is a central open space in plan to provide more surface area around the building for natural ventilation. Plan area of the building is 300 m2(excluding the open space) and height is 50 m. Steady state flow of wind with 5% turbulence (moderate turbulence) under atmospheric boundary layer has been taken in the study. Numerical simulation with standard k-e model using ANSYS (CFX) software has been used for the purpose. Flow characteristics has been studied in terms of flow separation, reattachment of flow, creation of wakes and vortices. The surface pressure generated around the model has been studied in terms of coefficient of pressure. The model is symmetrical about both the axes in plan. Hence, study for different wind angle of attacks from 0° to 90° @ 30° interval has been conducted. The flow characteristics and unusual or critical coefficient of pressure on surfaces of the model observed have been discussed. Doi: 10.28991/cej-2021-03091760 Full Text: PDF


2020 ◽  
Vol 26 (1) ◽  
pp. 74-86
Author(s):  
Elahe Mirabi ◽  
Nazanin Nasrollahi ◽  
Mehdi Dadkhah

Natural ventilation is application of natural drift power of wind. Wind can enter and exit buildings through the openings on facades. Hence, Form of facades can impact the air flow behaviour and consequently natural ventilation because they can change the pressure distribution on facades. Moreover, wind pressure difference between windward and leeward facades of buildings is the most important factor affecting natural ventilation. So, it is worthy to focus on facade details in order to enhance natural ventilation. Particularly, geometrical details of facades such as protrusions and indentations e.g. balconies can be considered effective elements on average pressure distribution on both windward and leeward facades, changing pressure difference between these facades. This difference can drive the air flow towards interior spaces significantly. Although this basic rule has been used by different researchers in order to increase natural ventilation buildings, the most research has been studied buildings with flat facades. Therefore, this study aims to investigate effects of balcony types on the natural ventilation. Three types of balcony are simulated and the wind pressure distribution on the windward and leeward facades are analysed. All these simulations are carried out for normally (perpendicular) and obliquely incident wind. This study is performed with Ansys Fluent 18 for all simulations. The results showed that balcony types can affect the pressure distribution on the windward and leeward facades of buildings, leading to the more or less pressure difference between these two facades. These results show that protrusion (protrusive balcony) can cause more complicated pattern of the wind pressure on facades than the others. Also, Re-entrant balcony causes the more pressure differences between the windward and leeward facades and enhances natural ventilation of buildings more considerably than the protrusive one.


2018 ◽  
Vol 27 (13) ◽  
pp. e1483 ◽  
Author(s):  
T. Deng ◽  
J.Y. Fu ◽  
Z.N. Xie ◽  
Y.L. Pi ◽  
B.Q. Shi

2013 ◽  
Vol 639-640 ◽  
pp. 485-488 ◽  
Author(s):  
Yao Xiong

One of the critical loads in engineering design is wind load, especially for high-rise structure or multi-story structure. In order to forecast the distribution of wind effects on structure, how to accurately predict the building surface wind pressure distribution is very important. Using the wind tunnel model test and numerical simulation calculation methods, the surface wind load on the mega-frame structure were comparatively analyzed and researched in this paper. The results show that combined the realized к-ε model with the standard wall function will not only satisfy the mega-frame structure surface wind pressure value requirement, but also provide complete wind filed around, which could provide meaningful information for further research on wind load.


2005 ◽  
Vol 37 (8) ◽  
pp. 878-889 ◽  
Author(s):  
Geoffrey van Moeseke ◽  
Elisabeth Gratia ◽  
Sigrid Reiter ◽  
André De Herde

Sign in / Sign up

Export Citation Format

Share Document