Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells

2005 ◽  
Vol 5 (1) ◽  
pp. 9-11 ◽  
Author(s):  
Lynda Li Song ◽  
Lucio Miele
2004 ◽  
Vol 6 (6) ◽  
Author(s):  
Gabriela Dontu ◽  
Kyle W Jackson ◽  
Erin McNicholas ◽  
Mari J Kawamura ◽  
Wissam M Abdallah ◽  
...  

2015 ◽  
Vol 112 (5) ◽  
pp. E402-E409 ◽  
Author(s):  
Marcelo Boareto ◽  
Mohit Kumar Jolly ◽  
Mingyang Lu ◽  
José N. Onuchic ◽  
Cecilia Clementi ◽  
...  

Notch signaling pathway mediates cell-fate determination during embryonic development, wound healing, and tumorigenesis. This pathway is activated when the ligand Delta or the ligand Jagged of one cell interacts with the Notch receptor of its neighboring cell, releasing the Notch Intracellular Domain (NICD) that activates many downstream target genes. NICD affects ligand production asymmetrically––it represses Delta, but activates Jagged. Although the dynamical role of Notch–Jagged signaling remains elusive, it is widely recognized that Notch–Delta signaling behaves as an intercellular toggle switch, giving rise to two distinct fates that neighboring cells adopt––Sender (high ligand, low receptor) and Receiver (low ligand, high receptor). Here, we devise a specific theoretical framework that incorporates both Delta and Jagged in Notch signaling circuit to explore the functional role of Jagged in cell-fate determination. We find that the asymmetric effect of NICD renders the circuit to behave as a three-way switch, giving rise to an additional state––a hybrid Sender/Receiver (medium ligand, medium receptor). This phenotype allows neighboring cells to both send and receive signals, thereby attaining similar fates. We also show that due to the asymmetric effect of the glycosyltransferase Fringe, different outcomes are generated depending on which ligand is dominant: Delta-mediated signaling drives neighboring cells to have an opposite fate; Jagged-mediated signaling drives the cell to maintain a similar fate to that of its neighbor. We elucidate the role of Jagged in cell-fate determination and discuss its possible implications in understanding tumor–stroma cross-talk, which frequently entails Notch–Jagged communication.


2016 ◽  
Vol 104 (3) ◽  
pp. 324-329 ◽  
Author(s):  
Shin’ichiro Yasunaga ◽  
Yoshinori Ohno ◽  
Naoto Shirasu ◽  
Bo Zhang ◽  
Kyoko Suzuki-Takedachi ◽  
...  

Author(s):  
Ayako Miura ◽  
Hironobu Tsubouchi ◽  
Shigehisa Yanagi ◽  
Nobuhiro Matsumoto ◽  
Masamitsu Nakazato

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi104-vi104
Author(s):  
Bayli DiVita Dean ◽  
Tyler Wildes ◽  
Joseph Dean ◽  
David Shin ◽  
Connor Francis ◽  
...  

Abstract INTRODUCTION Bone marrow-derived hematopoietic stem and progenitor cells (HSPCs) give rise to the cellular components of the immune system. Unfortunately, immune reconstitution from HSPCs are negatively impacted by solid cancers, including high-grade gliomas. For example, an expansion of myeloid progenitor cells has been previously described across several cancers that originate outside the CNS. A similar expansion of MDSCs coupled with diminished T cell function has also been described in the peripheral blood of patients with newly-diagnosed GBM. Alterations in both lymphoid and myeloid compartments due to CNS malignancy led us to determine how intracranial gliomas impact HSPCs in both their capacity to reconstitute the immune compartment and in their cell fate determination. This is important to better understand the impact of gliomas on immunity and how we can leverage these findings to better develop cellular immunotherapeutics. METHODS HSPCs were isolated from bone marrow of C57BL/6 mice with orthotopic KR158B glioma, or age-matched naïve mice. Experiments were conducted to compare relative changes in: gene expression (RNA-sequencing), precursor frequencies, cell fate determination, and cellular function of cells derived from HSPCs of glioma-bearing mice. RESULTS RNA-sequencing revealed 700+ genes whose expression was significantly up- or downregulated in HSPCs from glioma-bearing mice, particularly those involved with stemness and metabolic activity. Importantly, HSPCs from glioma-bearing mice expressed upregulation of genes involved in myelopoiesis relative to naïve mice. This was coupled with an expansion of granulocyte macrophage precursors (GMPs), the progenitors to gMDSCs. Next, differentiation assays revealed that HSPCs from glioma-bearing mice had higher propensity of differentiating into MDSC under homeostatic conditions relative to controls both in vitro and in vivo. Furthermore, mice bearing intracranial gliomas possess an expansion of MDSCs which are more suppressive on T cell proliferation and hinders T cell-mediated tumor cell killing relative to MDSCs derived from naïve control mice.


Sign in / Sign up

Export Citation Format

Share Document