Antiproliferative effect of 2-Hydroxy-6-tridecylbenzoic acid from ginkgo biloba sarcotestas through the aryl hydrocarbon receptor pathway in triple-negative breast cancer cells

2018 ◽  
Vol 34 (6) ◽  
pp. 893-897 ◽  
Author(s):  
Dayu Zhou ◽  
Chunying Jiang ◽  
Chenghao Fu ◽  
Ping Chang ◽  
Bin Yang ◽  
...  
2021 ◽  
Vol 22 (4) ◽  
pp. 1654
Author(s):  
Jinyun Chen ◽  
Yujie Yang ◽  
Wade A. Russu ◽  
William K. Chan

The aryl hydrocarbon receptor (AHR) is a ligand-activated signaling molecule expressed in many cell types, including triple-negative and non-triple-negative breast cancer cells. It affects breast cancer growth and crosstalk with estrogen receptor signaling. Normally, this receptor is degraded shortly after ligand activation via the 26S proteasome. Here, we report that AHR undergoes chaperone-mediated autophagy in MDA-MB-468 triple-negative breast cancer cells. This lysosomal degradation of AHR exhibits the following characteristics: (1) it is triggered by 6 amino-nicotinamide, starvation, and piperazinylpyrimidine compound Q18; (2) it is not observed in non-triple-negative breast cancer cells (MCF-7, T47D, and MDA-MB-361); (3) it can be inhibited by progesterone receptor B but not estrogen receptor alpha; (4) it can be reversed by chloroquine but not MG132; (5) it requires LAMP2A; and (6) it involves AHR-HSC70 and AHR-LAMP2A interactions. The NEKFF sequence localized at amino acid 558 of human AHR appears to be a KFERQ-like motif of chaperone-mediated autophagy, responsible for the LAMP2A-mediated AHR protein degradation.


2021 ◽  
Vol 14 ◽  
Author(s):  
Kaneez Fatima ◽  
Suaib Luqman

Background: Triple-negative breast cancer (TNBC) requires targeted therapies to better manage and prevent metastatic mammary gland tumors. Due to the resistance problem associated with the approved drugs, researchers are now focusing on phytochemicals for the treatment of TNBC as they possess a pleiotropic mode of action and fewer side effects. Objective: To investigate the antiproliferative effect of citronellal in triple negative breast cancer cells. Method: Anticancer potential of citronellal was explored by employing SRB, MTT and NRU antiproliferative assay. Further, the effect of citronellal was observed on molecular targets (Tubulin, COX-2 and LOX-5) utilizing in vitro and in silico methods. Furthermore, the efficacy of citronellal was examined on Ehrlich Ascites Carcinoma. In addition, the safety profiling of it was observed at 300 and 1000 mg/kg of body weight in mice. Results: Citronellal suppresses the growth of MDA-MB-231 cells by more than 50% in NRU assay and ~41% and 32% in SRB and MTT assay, respectively. Further, citronellal's effect was observed on molecular targets wherein it suppressed LOX-5 activity (IC50 40.63±2.27 µM) and prevented polymerization of microtubule (IC50 63.62 µM). The result was more prominent against LOX-5 as supported by molecular docking interaction studies, but a non-significant effect was observed at the transcriptional level. The efficacy of citronellal was also determined in Ehrlich Ascites Carcinoma (EAC) model, wherein it inhibited the growth of tumor cells (45.97%) at 75 mg/kg of body weight. It was non-toxic upto 1000 mg/kg of body weight in mice and did not cause significant lysis of erythrocytes. Conclusion: These observations could provide experimental support for citronellal to be used as a chemopreventive agent for breast cancer.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Carlos A. Sánchez-Valdeolívar ◽  
Patricia Alvarez-Fitz ◽  
Ana E. Zacapala-Gómez ◽  
Macdiel Acevedo-Quiroz ◽  
Lorena Cayetano-Salazar ◽  
...  

2017 ◽  
Vol 12 (1) ◽  
pp. 221-229
Author(s):  
Abeer M. Ashmawy ◽  
Mona A. Sheta ◽  
Faten Zahran ◽  
Abdel Hady A. Abdel Wahab

2021 ◽  
Vol 17 (4) ◽  
pp. 513-522
Author(s):  
Xuye Zhao ◽  
Xiangdong Bai ◽  
Weina Li ◽  
Xuezhen Gao ◽  
Xiaoli Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document