Influence of static magnetic field intensity on the separation and migration of Fe-rich bulks in an immiscible (Fe–C)–Cu alloy

Author(s):  
Mingjun Li ◽  
Takuya Tamura
2014 ◽  
Vol 159 ◽  
pp. 48-54 ◽  
Author(s):  
Chuan Niu ◽  
Weihao Liang ◽  
Hongqiang Ren ◽  
Jinju Geng ◽  
Lili Ding ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abbas Moghanizadeh ◽  
Fakhreddin Ashrafizadeh ◽  
Jaleh Varshosaz ◽  
Antoine Ferreira

AbstractEmploying the magnets in therapy has a long history of treating diseases, and currently new applications such as drug delivery by magnetic nanoparticles are gaining more attention. This research tried to study the effect of static magnetic field intensity on drug delivery by magnetic nanoparticles carrying thrombolytic agents. In this research, Fe3O4@SiO2 nanoparticles carrying streptokinase were applied. The efficiency of thrombolysis and micro-CT-scan images are utilized to study the effect of different magnetic fields (0.1, 0.2, 0.3 and 0.5 T) on thrombolysis. The results confirm that increasing the static magnetic field intensity accelerated the thrombolysis. Increasing the intensity of the magnetic field from 0.1 to 0.3 T leads to an increase in clot dissolution rate from 55 to 89%, respectively. Moreover, micro-CT-scan images revealed that magnetic nanoparticles carrying a thrombolytic agent penetrated deeper into the mesh-like structure of clot as the magnetic field intensities increased, which could lead to further dissolution of the clot.


2008 ◽  
Vol 8 (3) ◽  
pp. 501-507 ◽  
Author(s):  
G. Prattes ◽  
K. Schwingenschuh ◽  
H. U. Eichelberger ◽  
W. Magnes ◽  
M. Boudjada ◽  
...  

Abstract. We present the results of ground-based Ultra Low Frequency (ULF) magnetic field measurements observed from June to August 2004 during the Bovec earthquake on 12 July 2004. Further we give information about the seismic activity in the local observatory region for an extended time span 2004 and 2005. ULF magnetic field data are provided by the South European Geomagnetic Array (SEGMA) where the experience and heritage from the CHInese MAGnetometer (CHIMAG) fluxgate magnetometer comes to application. The intensities of the horizontal H and vertical Z magnetic field and the polarization ratio R of the vertical and horizontal magnetic field intensity are analyzed taking into consideration three SEGMA observatories located at different close distances and directions from the earthquake epicenter. We observed a significant increase of high polarization ratios during strong seismic activity at the observatory nearest to the Bovec earthquake epicenter. Apart from indirect ionospheric effects electromagnetic noise could be emitted in the lithosphere due to tectonic effects in the earthquake focus region causing anomalies of the vertical magnetic field intensity. Assuming that the measured vertical magnetic field intensities are of lithospheric origin, we roughly estimate the amplitude of electromagnetic noise in the Earths crust considering an average electrical conductivity of <σ>=10−3 S/m and a certain distance of the observatory to the earthquake epicenter.


Author(s):  
Pushap Lata Sharma ◽  
Sumit Gupta

This paper deals with the convection of micropolar fluids heated and soluted from below in the presence of suspended particles (fine dust) and uniform vertical rotation and uniform vertical magnetic field in a porous medium. Using the Boussinesq approximation, the linearized stability theory and normal mode analysis, the exact solutions are obtained for the case of two free boundaries. It is found that the presence of the suspended particles number density, the rotation parameter, stable solute, magnetic field intensity and medium permeability bring oscillatory modes which were non–existent in their absence. It is found that the presence of coupling between thermal and micropolar effects, rotation parameter, solute parameter and suspended particles may introduce overstability in the system. Graphs have been plotted by giving numerical values to the parameters accounting for rotation parameter , magnetic field solute parameter, the dynamic microrotation viscosity and coefficient of angular viscosity to depict the stability characteristics, for both the cases of stationary convection and overstability. It is found that Rayleigh number for the case of overstability and stationary convection increases with increase in rotation parameter, as well as with magnetic field intensity, solute parameter and decreases with increase in micropolar coefficients and medium permeability, for a fixed wave number, implying thereby the stabilizing effect of rotation parameter, magnetic field intensity ,solute parameter and destabilizing effect of micropolar coefficients and medium permeability on the thermosolutal convection of micropolar fluids.


2019 ◽  
Vol 7 (13) ◽  
pp. 3740-3743 ◽  
Author(s):  
Ying Li ◽  
Yue Long ◽  
Guoqiang Yang ◽  
Chen-Ho Tung ◽  
Kai Song

The wavelength of amplified spontaneous emission based on liquid magnetically responsive photonic crystals can be tuned by simply changing the magnetic field intensity.


Sign in / Sign up

Export Citation Format

Share Document