Experimental investigation of energy and exergy efficiency of masonry-type solar cooker for animal feed

2010 ◽  
Vol 29 (3) ◽  
pp. 178-184 ◽  
Author(s):  
N. L. Panwar ◽  
Surendra Kothari ◽  
S. C. Kaushik
Author(s):  
Mohammed El Hadi Attia ◽  
Abd Elnaby Kabeel ◽  
Abdelkader Bellila ◽  
Athikesavan Muthu Manokar ◽  
Ravishankar Sathyamurthy ◽  
...  

2020 ◽  
Vol 5 (1) ◽  
pp. 563-572
Author(s):  
Iman Golpour ◽  
Mohammad Kaveh ◽  
Reza Amiri Chayjan ◽  
Raquel P. F. Guiné

AbstractThis research work focused on the evaluation of energy and exergy in the convective drying of potato slices. Experiments were conducted at four air temperatures (40, 50, 60 and 70°C) and three air velocities (0.5, 1.0 and 1.5 m/s) in a convective dryer, with circulating heated air. Freshly harvested potatoes with initial moisture content (MC) of 79.9% wet basis were used in this research. The influence of temperature and air velocity was investigated in terms of energy and exergy (energy utilization [EU], energy utilization ratio [EUR], exergy losses and exergy efficiency). The calculations for energy and exergy were based on the first and second laws of thermodynamics. Results indicated that EU, EUR and exergy losses decreased along drying time, while exergy efficiency increased. The specific energy consumption (SEC) varied from 1.94 × 105 to 3.14 × 105 kJ/kg. The exergy loss varied in the range of 0.006 to 0.036 kJ/s and the maximum exergy efficiency obtained was 85.85% at 70°C and 0.5 m/s, while minimum exergy efficiency was 57.07% at 40°C and 1.5 m/s. Moreover, the values of exergetic improvement potential (IP) rate changed between 0.0016 and 0.0046 kJ/s and the highest value occurred for drying at 70°C and 1.5 m/s, whereas the lowest value was for 70°C and 0.5 m/s. As a result, this knowledge will allow the optimization of convective dryers, when operating for the drying of this food product or others, as well as choosing the most appropriate operating conditions that cause the reduction of energy consumption, irreversibilities and losses in the industrial convective drying processes.


Author(s):  
Mohammed El Hadi Attia ◽  
Abd Elnaby Kabeel ◽  
Abdelkader Bellila ◽  
Athikesavan Muthu Manokar ◽  
Ravishankar Sathyamurthy ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4522
Author(s):  
Zude Cheng ◽  
Haitao Wang ◽  
Junsheng Feng ◽  
Yongfang Xia ◽  
Hui Dong

In order to fully understand the energy and exergy transfer processes in sinter vertical coolers, a simulation model of the fluid flow and heat transfer in a vertical cooler was established, and energy and exergy efficiency analyses of the gas–solid heat transfer in a vertical cooler were conducted in detail. Based on the calculation method of the whole working condition, the suitable operational parameters of the vertical cooler were obtained by setting the net exergy efficiency in the vertical cooler as the indicator function. The results show that both the quantity of sinter waste heat recovery (SWHR) and energy efficiency increased as the air flow rate (AFR) increased, and they decreased as the air inlet temperature (AIT) increased. The increase in the sinter inlet temperature (SIT) resulted in an increase in the quantity of SWHR and a decrease in energy efficiency. The air net exergy had the maximum value as the AFR increased, and it only increased monotonically as the SIT and AIT increased. The net exergy efficiency reached the maximum value as the AFR and AIT increased, and the increase in the SIT only resulted in a decrease in the net exergy efficiency. When the sinter annual production of a 360 m2 sintering machine was taken as the processing capacity of the vertical cooler, the suitable operational parameters of the vertical cooler were 190 kg/s for the AFR, and 353 K for the AIT.


Author(s):  
Minhua Huang ◽  
Haiqiao Wang ◽  
Feng Tian ◽  
Junxin Huang ◽  
Shiqiang Chen ◽  
...  

This study proposes a downstream single-row air washer for air cooling. The theoretical energy and exergy balance models were established at different droplet diameters and verified by the experimental data. Based on the abovementioned theoretical relationship, the single performance indicator of heat exchange efficiency (HEE) and exergy efficiency was quantitatively analyzed; a comprehensive analysis method of two indicators was proposed, combining HEE and exergy efficiency, and a numerical simulation was carried out. Results show that the smaller the droplet diameter and the larger the water–air ratio, the lower the dry-bulb temperature of the outlet air and the higher the HEE and exergy flux destruction. When the droplet diameter is less than 440 μm, the droplet diameter does not affect exergy efficiency and dry-bulb temperature. When the droplet diameter is larger than 440 μm, the droplet diameter is positively correlated with the air outlet dry-bulb temperature and exergy efficiency; in contrast, the water–gas ratio is negatively correlated with the air outlet dry-bulb temperature. An engineering case reveals that when the air outlet temperature is less than 34°C, the critical water–gas ratio can be set as 2.6 (mass ratio). At this time, the HEE is more than 90%, the exergy efficiency is more than 60%, and the critical value of droplet diameter is 440 μm. The research results provide an essential theoretical basis for the optimization of engineering design calculation.


Sign in / Sign up

Export Citation Format

Share Document