scholarly journals Energetic and exergetic analysis of a convective drier: A case study of potato drying process

2020 ◽  
Vol 5 (1) ◽  
pp. 563-572
Author(s):  
Iman Golpour ◽  
Mohammad Kaveh ◽  
Reza Amiri Chayjan ◽  
Raquel P. F. Guiné

AbstractThis research work focused on the evaluation of energy and exergy in the convective drying of potato slices. Experiments were conducted at four air temperatures (40, 50, 60 and 70°C) and three air velocities (0.5, 1.0 and 1.5 m/s) in a convective dryer, with circulating heated air. Freshly harvested potatoes with initial moisture content (MC) of 79.9% wet basis were used in this research. The influence of temperature and air velocity was investigated in terms of energy and exergy (energy utilization [EU], energy utilization ratio [EUR], exergy losses and exergy efficiency). The calculations for energy and exergy were based on the first and second laws of thermodynamics. Results indicated that EU, EUR and exergy losses decreased along drying time, while exergy efficiency increased. The specific energy consumption (SEC) varied from 1.94 × 105 to 3.14 × 105 kJ/kg. The exergy loss varied in the range of 0.006 to 0.036 kJ/s and the maximum exergy efficiency obtained was 85.85% at 70°C and 0.5 m/s, while minimum exergy efficiency was 57.07% at 40°C and 1.5 m/s. Moreover, the values of exergetic improvement potential (IP) rate changed between 0.0016 and 0.0046 kJ/s and the highest value occurred for drying at 70°C and 1.5 m/s, whereas the lowest value was for 70°C and 0.5 m/s. As a result, this knowledge will allow the optimization of convective dryers, when operating for the drying of this food product or others, as well as choosing the most appropriate operating conditions that cause the reduction of energy consumption, irreversibilities and losses in the industrial convective drying processes.

2020 ◽  
Vol 10 (18) ◽  
pp. 6309
Author(s):  
Yousef Abbaspour-Gilandeh ◽  
Mohammad Kaveh ◽  
Muhammad Aziz

In this study, the drying time, effective moisture diffusivity (Deff), specific energy consumption (SEC), and quality (color, shrinkage, and rehydration) of the ultrasound-pretreated (US) carrot slices were compared when dried by hot air drying (HD), microwave drying (MWD), infrared drying (INFD), and hybrid methods of MW–HD and INF–HD. Five mathematical models were considered to describe the drying kinetics in the carrots. The results show that US+MW–HD and INFD were the fastest and the slowest drying techniques compared to the HD technique with a 73% and 23% drying time reduction, respectively. The Deff ranged from 7.12 × 10−9 to 2.78 × 10−8 m2/s. The highest and lowest SECs were 297.29 ± 11.21 and 23.75 ± 2.22 MJ/kg which were observed in the HD and US+MWD, respectively. The color variation indices indicated that the best sample in terms of color stability was the one dried by US+MW–HD with the color variation of 11.02 ± 0.27. The lowest and highest shrinkage values were also observed in the samples dried by US+MWD and HD (31.8 ± 1.1% and 62.23 ± 1.77%), respectively. Samples dried by US+MWD and HD possessed the highest and lowest rehydration, respectively. Although the carrot slices dried at a higher pace by US+MW–HD (compared to US+MWD), the shrinkage and SEC of the samples dried by US+MWD were significantly lower than the US+MW–HD (p < 0.05). Therefore, it can be concluded that the application of the US+MWD method can be considered as a proper alternative for drying the carrot slices when compared to the HD, MWD, INFD, and hybrid methods.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 992
Author(s):  
Weipeng Zhang ◽  
Chang Chen ◽  
Zhongli Pan ◽  
Zhian Zheng

The objective of this study was to develop an efficient drying technology for poria cubes in order to improve product quality. Poria cubes were dried using different methods, including air impingement drying, infrared-assisted air impingement drying, vacuum drying, two-stage vacuum drying, and infrared-assisted air impingement drying. The results were compared with those from hot air drying. For the two-stage drying, the tested conditions were the first stage of vacuum drying with temperatures between 65–85 °C and a switching moisture ratio of 70–90%. The second stage infrared-assisted air impingement drying also had temperatures 65–85 °C. The drying kinetics (effective moisture diffusivity (Deff), Biot number (Bi), and mass transfer coefficient (k) were studied via the product qualities (broken ratio, firmness, microstructure, and water-soluble polysaccharide content) and specific energy consumption (SEC) of the drying processes. The results showed that two-stage drying led to the lowest drying time and energy consumption, and also obtained the best qualities. Box–Behnken experimental design with response surface methodology (RSM) was used to optimize the two-stage operating conditions as 82 °C under vacuum drying until a moisture content of 81% and a temperature of 69 °C with infrared-assisted air impingement drying was achieved. These findings suggested that two-stage vacuum and infrared-assisted air impingement drying is a promising method for producing high quality and energy efficient dried poria cubes.


2013 ◽  
Vol 27 (2) ◽  
pp. 127-132 ◽  
Author(s):  
H. Darvishi ◽  
M. Hadi Khoshtaghaza ◽  
G. Najafi ◽  
M. Zarein

Abstract The effect of the microwave-convective drying technique on the moisture ratio, drying rate, drying time, effective moisture diffusivity, microwave specific energy consumption, and energy efficiency of sunflower seedswere investigated.Drying took place in the falling rate period. Increasing the microwave power caused a significant decrease in the drying time. The drying data were fitted to four thin-layer drying models. The performance of these models was compared using the coefficient of determination, reduced chi-square and root mean square error between the observed and predicted moisture ratios. The results showed that the Page model was found to satisfactorily describe themicrowave-convective drying curves of sunflower seeds. The effective moisture diffusivity values were estimated from Fick diffusion model and varied from 1.73 10-7 to 4.76 10-7m2s-1. Increasing the microwave power resulted in a considerable increase in drying efficiency and a significant decrease in microwave specific energy consumption. The highest energy efficiency and the lowestmicrowave specific energy consumption were obtained at the microwave power of 300 W.


2012 ◽  
Vol 18 (1) ◽  
pp. 63-72 ◽  
Author(s):  
Ali Motevali ◽  
Saeid Minaei

Energy and exergy analyses may be considered as important tools for design, analysis and optimization of thermal systems. This paper reports on energy and exergy analyses of thin-layer drying of sour pomegranate arils with microwave pretreatment. There were two microwave pretreatments (100W for 20 min and 200 W for 10 min) along with a control treatment (convection drying with no microwave pretreatment). Experiments were carried out at three air temperatures (50, 60 and 70?C) and three air velocities (0.5, 1 and 1.5 m/s). Results showed that energy utilization and energy utilization ratio increased with time, while exergy efficiency decreased. Energy utilization and drying time decreased considerably with microwave pretreatment of pomegranate arils. The minimum values of exergy loss and exergy efficiency were associated with the 200W microwave pretreatment, while they were maximum for control treatment.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1500
Author(s):  
A. Najib ◽  
J. Orfi ◽  
H. Alansary ◽  
E. Ali

A comprehensive study was conducted to elucidate the effect of operating conditions on the performance of a multi-effect vacuum membrane distillation pilot plant. A theoretical assessment of the energy and exergy efficiency of the process was achieved using a mathematical model based on heat and mass transfer, which was calibrated using experimental data obtained from the pilot plant. The pilot plant was a solar vacuum multi-effect membrane distillation (V-MEMD) module comprising five stages. It was found that a maximal permeate mass flux of 17.2 kg/m2·h, a recovery ratio of 47.6%, and a performance ratio of 5.38% may be achieved. The resulting gain output ratio (GOR) under these conditions was 5.05, which is comparable to previously reported values. Furthermore, the present work systematically evaluated not only the specific thermal energy consumption (STEC), but also the specific electrical energy consumption (SEEC), which has been generally neglected in previous studies. We show that STEC and SEEC may reach 166 kWh/m3 and 4.5 kWh/m3, respectively. We also observed that increasing the feed flow rate has a positive impact on the process performance, particularly when the feed temperature is higher than 65 °C. Under ideal operational conditions, the exergetic efficiency reached 21.1%, and the maximum fraction of exergy destruction was localized in the condenser compartment. Variation of the inlet hot and cold temperatures at a constant differential showed an interesting and variable impact on the performance indicators of the V-MEMD unit. The difference with the lowest inlet temperatures exhibited the most negative impact on the system performance.


2021 ◽  
Vol 11 (16) ◽  
pp. 7672
Author(s):  
Yousef Abbaspour-Gilandeh ◽  
Mohammad Kaveh ◽  
Hamideh Fatemi ◽  
Esmail Khalife ◽  
Dorota Witrowa-Rajchert ◽  
...  

This study is focused on the influence of convective drying (50, 60, and 70 °C) and infrared (IR) power (250, 500, and 750 W) on the drying kinetics, the specific energy consumption of terebinth drying as well as quality and bioactive compounds upon various pretreatments such as ultrasound (US), blanching (BL), and microwave (MW). Compared to convective drying, IR drying decreased more the drying time and energy consumption (SEC). Application of higher IR powers and air temperatures accelerated the drying process at lower energy consumption (SEC) and higher energy efficiency and moisture diffusion. Terebinth dried by a convective dryer at 60 °C with US pretreatment showed a better color compared to other samples. It also exhibited the polyphenol and flavonoid content of 145.35 mg GAE/g d.m. and 49.24 mg QE/g d.m., respectively, with color variations of 14.25 and a rehydration rate of 3.17. The proposed pretreatment methods significantly reduced the drying time and energy consumption, and from the other side it increased energy efficiency, bioactive compounds, and quality of the dried samples (p < 0.01). Among the different pretreatments used, microwave pretreatment led to the best results in terms of the drying time and SEC, and energy efficiency. US pretreatment showed the best results in terms of preserving the bioactive compounds and the general appearance of the terebinth.


2021 ◽  
Vol 11 (4) ◽  
pp. 1481
Author(s):  
Aleksandra Cichoń ◽  
William Worek

This paper presents the analytical investigation of a novel system for combined Dew Point Cooling and Water Recovery (DPC-WR system). The operating principle of the presented system is to utilize the dew point cooling phenomenon implemented in two stages in order to obtain both air cooling and water recovery. The system performance is described by different indicators, including the coefficient of performance (COP), gained output ratio (GOR), energy utilization factor (EUF), specific energy consumption (SEC) and specific daily water production (SDWP). The performance indicators are calculated for various climatic zones using a validated analytical model based on the convective heat transfer coefficient. By utilizing the dew point cooling phenomenon, it is possible to minimize the heat and electric energy consumption from external sources, which results in the COP and GOR values being an order of magnitude higher than for other cooling and water recovery technologies. The EUF value of the DPC-WR system ranges from 0.76 to 0.96, with an average of 0.90. The SEC value ranges from 0.5 to 2.0 kWh/m3 and the SDWP value ranges from 100 to 600 L/day/(kg/s). In addition, the DPC-WR system is modular, i.e., it can be multiplied as needed to achieve the required cooling or water recovery capacity.


2021 ◽  
Vol 58 (02) ◽  
pp. 112-123
Author(s):  
Rakesh Kumar Raigar ◽  
Hari Niwas Mishra

Roasting is one of the thermo-mechanical operation in cereals and oilseeds processing. Low-capacity machine for mechanisation of roasting is necessary for small-scale processing. A conduction-type motorised rotary roaster (8 kg per batch) was designed and developed for roasting of peanuts. Performance of the roaster was evaluated in terms of moisture loss, scorched kernels, and specific energy consumption for accelerated roasting of peanut. The effects of different roasting conditions were studied to determine the optimum operating conditions of the roaster. Quality indices of peanuts as moisture loss (kg.kg-1), scorched kernel (%), and specific energy consumption (kWh.kg-1) were dependent on the operating conditions. The optimum value of moisture loss (0.041± 0.003 kg.kg-1), scorched kernel (0.93± 0.0.004 % ), and specific energy consumption (0.185 ± 0.005 kWh.kg-1) were obtained at roasting temperature of 170°C, roasting time of 15 min, and rotational speed of 20 rpm for roasting peanut. The roasting characteristics of peanut decreased linearly with increase in the temperature and time; and decrease in the rotational speed. The inferior quality parameters were observed at higher temperatures, speed and medium time of roasting. The study indicated optimum roasting temperature of peanut to be 170°C, and further increase in the process temperature had undesirable effects on roasted peanut quality due to high loss of moisture.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Atia E. Khalifa

Abstract A comprehensive experimental investigation is conducted to evaluate the performance of a new flux-enhanced compact water gap membrane distillation (WGMD) module design with gap circulation and cooling for water desalination. The new design uses a separate circulation loop to circulate the gap water, and a built-in heat exchanger coil implanted inside the coolant stream channel for cooling the circulated gap water. The WGMD modules with circulation and with circulation and cooling are compared with conventional WGMD without circulation. Variations of distillate flux, temperatures, and energy consumption are presented at different design operating conditions. Circulation and cooling of the gap water greatly enhance the output flux due to gap water motion and increase the temperature difference between membrane surfaces. However, the enhancement in flux was achieved at the expense of energy consumption. Circulation and cooling of gap water are more effective with bigger gap widths. Feed flowrate showed significant effects with gap water circulation and cooling. The electrical specific energy consumption (SEC) showed the best value of 7.9 and 8.8 kWh/m3 at a feed temperature of 70 °C for both conventional WGMD and WGMD with circulation modules, while the best value of SEC for the WGMD module with gap circulation and cooling was 9.4 kWh/m3 at a feed temperature of 80 °C.


2019 ◽  
Vol 30 (6) ◽  
pp. 3399-3434 ◽  
Author(s):  
Soroush Sadripour ◽  
Mohammad Estajloo ◽  
Seyed Abdolmehdi Hashemi ◽  
Ali J. Chamkha ◽  
Mahmoud Abbaszadeh

Purpose The purpose of this study is to reduce energy consumption in bakeries. Due to fulfill this demand, quite a few parameters such as energy and exergy efficiency, energy waste and fuel consumption by different traditional flatbreads bakeries (Sangak, Barbari, Taftun and Lavash should be monitored and their roles should not be neglected. Design/methodology/approach In the present study, experimental measurements and mathematical modeling are used to scrutinize and investigate the effects of the aforementioned parameters on energy consumption by bakeries. Findings The results show that by doing reported methods in this paper, the wasted energy of the walls can be decreased by about 65 per cent; and also, by controlling the combustion reaction to perform with 5 per cent excess air, the wasted energy of excess air declines by about 90 per cent. And finally, the energy and exergy efficiency of bakeries is increased, and as a result, the annual energy consumption of Sangak, Barbari, Taftun and Lavash bakeries diminish about 71, 59, 57 and 40 per cent, respectively. Originality/value As evidenced by the literature review, it can be observed that neither numerical studies nor experimental investigations have been conducted about energy and exergy analyses of Iranian machinery traditional flatbread bakeries. It is clear that due to a high preference of Iranians to use the traditional bread and also the popularity of baking this kind of bread in Iran, if it is possible to enhance the traditional oven conditions to decrease the loss of natural gas instead of industrializing the bread baking, the energy consumption in the country can be optimized.


Sign in / Sign up

Export Citation Format

Share Document