Scalar Scattering by Two Small, Non-Concentric Penetrable Spheres

2012 ◽  
Vol 19 (5) ◽  
pp. 309-322
Author(s):  
John Lucas-Lekatsas ◽  
Vassilis Kostopoulos
2016 ◽  
Vol 25 (11) ◽  
pp. 1650088
Author(s):  
V. I. Zhaba

A known phase-functions method (PFM) has been considered for calculation of a single-channel nucleon–nucleon scattering. The following partial waves of a nucleon–nucleon scattering have been considered using the phase shifts by PFM: 1S0-, 3P0-, 3P1-, 1D2-, 3F3-states for nn-scattering, 1S0-, 3P0-, 3P1-, 1D2-states for pp-scattering and 1S0-, 1P1-, 3P0-, 3P1-, 1D2-, 3D2-states for np-scattering. The calculations have been carried out using phenomenological nucleon–nucleon Nijmegen group potentials (NijmI, NijmII, Nijm93 and Reid93) and Argonne v18 potential. The scalar scattering amplitude has been calculated using the obtained phase shifts. Our results are not much different from those obtained by using the known phase shifts published in other papers. The difference between calculations depending on a computational method of phase shifts makes: for real (imaginary) parts 0.14–4.36% (0.16–4.05%) for NijmI. 0.02–4.79% (0.08–3.88%) for NijmII. 0.01–5.49% (0.01–4.14%) for Reid93 and 0.01–5.11% (0.01–2.40%) for Argonne v18 potentials.


Author(s):  
A. Gillman ◽  
G. Amadio ◽  
K. Matouš ◽  
T. L. Jackson

Obtaining an accurate higher order statistical description of heterogeneous materials and using this information to predict effective material behaviour with high fidelity has remained an outstanding problem for many years. In a recent letter, Gillman & Matouš (2014 Phys. Lett. A 378, 3070–3073. ()) accurately evaluated the three-point microstructural parameter that arises in third-order theories and predicted with high accuracy the effective thermal conductivity of highly packed material systems. Expanding this work here, we predict for the first time effective thermo-mechanical properties of granular Platonic solid packs using third-order statistical micromechanics. Systems of impenetrable and penetrable spheres are considered to verify adaptive methods for computing n -point probability functions directly from three-dimensional microstructures, and excellent agreement is shown with simulation. Moreover, a significant shape effect is discovered for the effective thermal conductivity of highly packed composites, whereas a moderate shape effect is exhibited for the elastic constants.


Sign in / Sign up

Export Citation Format

Share Document