scholarly journals Third-order thermo-mechanical properties for packs of Platonic solids using statistical micromechanics

Author(s):  
A. Gillman ◽  
G. Amadio ◽  
K. Matouš ◽  
T. L. Jackson

Obtaining an accurate higher order statistical description of heterogeneous materials and using this information to predict effective material behaviour with high fidelity has remained an outstanding problem for many years. In a recent letter, Gillman & Matouš (2014 Phys. Lett. A 378, 3070–3073. ()) accurately evaluated the three-point microstructural parameter that arises in third-order theories and predicted with high accuracy the effective thermal conductivity of highly packed material systems. Expanding this work here, we predict for the first time effective thermo-mechanical properties of granular Platonic solid packs using third-order statistical micromechanics. Systems of impenetrable and penetrable spheres are considered to verify adaptive methods for computing n -point probability functions directly from three-dimensional microstructures, and excellent agreement is shown with simulation. Moreover, a significant shape effect is discovered for the effective thermal conductivity of highly packed composites, whereas a moderate shape effect is exhibited for the elastic constants.

2020 ◽  
Vol 842 ◽  
pp. 63-68
Author(s):  
Xiao Zhang ◽  
Jian Zheng ◽  
Yong Qiang Du ◽  
Chun Ming Zhang

Three-dimensional (3D) network structure has been recognized as an efficient approach to enhance the mechanical and thermal conductive properties of polymeric composites. However, it has not been applied in energetic materials. In this work, a fluoropolymer based composite with vertically oriented and interconnected 3D graphite network was fabricated for polymer bonded explosives (PBXs). Here, the graphite and graphene oxide platelets were mixed, and self-assembled via rapid freezing and using crystallized ice as the template. The 3D structure was finally obtained by freezing-dry, and infiltrating with polymer. With the increasing of filler fraction and cooling rate, the thermal conductivity of the polymer composite was significantly improved to 2.15 W m-1 K-1 by 919% than that of pure polymer. Moreover, the mechanical properties, such as tensile strength and elastic modulus, were enhanced by 117% and 563%, respectively, when the highly ordered structure was embedded in the polymer. We attribute the increased thermal and mechanical properties to this 3D network, which is beneficial to the effective heat conduction and force transfer. This study supports a desirable way to fabricate the strong and thermal conductive fluoropolymer composites used for the high-performance polymer bonded explosives (PBXs).


2019 ◽  
Vol 33 (8) ◽  
pp. 1017-1029 ◽  
Author(s):  
Honglin Luo ◽  
Jikui Liu ◽  
Zhiwei Yang ◽  
Quanchao Zhang ◽  
Haiyong Ao ◽  
...  

Electrically insulating yet thermally conductive polymer-based composites are highly sought after in aerospace field. In this work, for the first time, electrically insulating but thermally conductive polyimide (PI) composites are fabricated by simultaneously incorporating micro- and nano-sized aluminum nitride (AlN) particles via a simple, economic, and scalable method of ball milling and subsequent hot-pressing process. The thermal conductivity, dielectric, and mechanical properties of the PI composites depend on the ratio of micro-sized AlN (m-AlN) to nano-sized AlN (n-AlN) and the total content of AlN in the PI composites. The thermal conductivity of the PI composites with 40 wt% m-AlN and 20 wt% n-AlN is 1.5 ± 0.05 W·m−1·K−1, which is 10 times higher than that of bare PI. The PI composites hold a great potential in aerospace industries.


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Longsheng Deng ◽  
Wen Fan ◽  
Shaopeng Liu ◽  
Yupeng Chang ◽  
Yan Dai ◽  
...  

Loess is a special geotechnical material with strong structural properties, and the microstructural characteristics of loess significantly influence its macroscopic physical features, mechanical properties, and catastrophic behavior. In this paper, serial samples were extracted from the continuous loess and paleosol strata of the Bai Lu tableland; with these samples, the optical microscopy-based serial sectioning method was adopted to study the quantitative characterization and variation in the loess microstructure. Three-dimensional characteristics and quantitative parameters of the particles, pores, and throats of the loess were obtained. The results indicate that the volume, Eq-Radius, and major-minor axis ratio of the loess particles satisfy third-order, third-order, and second-order Gaussian distributions, respectively. The Eq-Radius of the loess pores and throats satisfies a first-order Gaussian distribution, and the throat channel length satisfies a gamma distribution. With increasing stratum depth, the particles become more flattened, the throat radii become larger and the pore channels become slenderer. The variation in fitting parameters and the correlations between the macrophysical and mechanical properties of loess were then explored. The study of the microstructure of loess contributes to a better understanding of the catastrophic behavior of loess and the physical mechanism of geologic hazards in this area.


Author(s):  
Dmitriy Lazarev ◽  
Valeriy Artemov ◽  
Georgiy Yankov ◽  
Konstantin Minko

A three-dimensional mathematical model of unsteady heat and mass transfer in porous hydrogen-absorbing media, accounting for presence of “passive” gas admixtures, is developed. New technique for evaluation of effective thermal conductivity of porous medium, which consists of microparticles, is suggested. Effect of “passive” gas admixtures on heat and mass transfer and sorption rate in metal hydride reactor is analyzed. It is shown that decrease of effective thermal conductivity and partial hydrogen pressure under decrease of hydrogen concentration effect on the hydrogen sorption rate considerably. It is disclosed that an intensive 3D natural convection takes place in a gas volume of reactor under certain conditions. Numerical analysis of heat and mass transfer in metal-hydride reactor of hydrogen accumulation systems was done. Sorption of hydrogen in cylindrical reactors with external cooling and central supply of hydrogen are analyzed including reactors with finned active volume and tube-shell reactor with external and internal cooling cartridge matrix. Unsteady three dimensional temperature and concentration fields in solid phase are presented. Integral curves representing the dynamic of sorption and desorption are calculated. Data on efficiency of considered reactors are presented and compared.


2017 ◽  
Vol 27 (11) ◽  
pp. 2433-2450 ◽  
Author(s):  
Eric Monier-Vinard ◽  
Brice Rogie ◽  
Valentin Bissuel ◽  
Najib Laraqi ◽  
Olivier Daniel ◽  
...  

Purpose Latest Computational Fluid Dynamics (CFDs) tools allow modeling more finely the conjugate thermo-fluidic behavior of a single electronic component mounted on a Printed Wiring Board (PWB). A realistic three-dimensional representation of a large set of electric copper traces of its composite structure is henceforth achievable. The purpose of this study is to confront the predictions of the fully detailed numerical model of an electronic board to a set of experiment results to assess their relevance. Design/methodology/approach The present study focuses on the case of a Ball Grid Array (BGA) package of 208 solder balls that connect the component electronic chip to the Printed Wiring Board. Its complete geometrical definition has to be coupled with a realistic board layers layout and a fine description of their numerous copper traces to appropriately predict the way the heat is spread throughout that multi-layer composite structure. The numerical model computations were conducted on four CFD software then compare to experiment results. The component thermal metrics for single-chip packages are based on the standard promoted by the Joint Electron Device Engineering Council (JEDEC), named JESD-51. The agreement of the numerical predictions and measurements has been done for free and forced convection. Findings The present work shows that the numerical model error is lower than 2 per cent for various convective boundary conditions. Moreover, the establishment of realistic numerical models of electronic components permits to properly apprehend multi-physics design issues, such as joule heating effect in copper traces. Moreover, the practical modeling assumptions, such as effective thermal conductivity calculation, used since decades, for characterizing the thermal performances of an electronic component were tested and appeared to be tricky. A new approach based on an effective thermal conductivity matrix is investigated to reduce computation time. The obtained numerical results highlight a good agreement with experimental data. Research limitations/implications The study highlights that the board three-dimensional modeling is mandatory to properly match the set of experiment results. The conventional approach based on a single homogenous layer using effective thermal conductivity calculation has to be banned. Practical implications The thermal design of complex electronic components is henceforth under increasing control. For instance, the impact of gold wire-bonds can now be investigated. The three-dimensional geometry of sophisticated packages, such as in BGA family, can be imported with all its internal details as well as those of its associated test board to build a realistic numerical model. The establishment of behavioral models such as DELPHI Compact Thermal Models can be performed on a consistent three-dimensional representation with the aim to minimize computation time. Originality/value The study highlights that multi-layer copper trace plane discretization could be used to strongly reduce computation time while conserving a high accuracy level.


Author(s):  
Jin Zhang ◽  
Harris Wong

Micro heat pipes have been used in cooling micro electronic components. However their effective thermal conductivity is low compared with that of conventional heat pipes. Due to the complexity of the coupled heat and mass transport, and to the complicated three-dimensional bubble geometry inside micro heat pipes, there is a lack of rigorous analysis. As a result, the relatively low effective thermal conductivity remains unexplained. We have conceptualized an idealized micro heat pipe that eliminates the complicated geometry, but retains the essential physics. Given the simplified geometry, many effects can be studied, such as thermocapillary flow, and evaporation and condensation physics. In this talk, we will present the flow field induced by evaporation.


2009 ◽  
Vol 631-632 ◽  
pp. 35-40
Author(s):  
M. Zhang ◽  
Peng Cheng Zhai ◽  
Qing Jie Zhang

This paper is aimed to numerically evaluate the effective thermal conductivity of randomly distributed spherical particle composite with imperfect interface between the constituents. A numerical homogenization technique based on the finite element method (FEM) with representative volume element (RVE) was used to evaluate the effective properties with periodic boundary conditions. Modified random sequential adsorption algorithm (RSA) is applied to generate the three dimensional RVE models of randomly distributed spheres of identical size with the volume fractions up to 50%. Several investigations have been conducted to estimate the influence of the imperfect interfaces on the effective conductivity of particulate composite. Numerical results reveal that for the given composite, due to the existence of an interfacial thermal barrier resistance, the effective thermal conductivity depends not only on the volume fractions of the particle but on the particle size.


Author(s):  
Ajay Vadakkepatt ◽  
Bradley L. Trembacki ◽  
Sanjay R. Mathur ◽  
Jayathi Y. Murthy

Simulations of lithium ion batteries on a cell level are usually performed with volume averaging methods that employ effective transport properties. Bruggeman’s model, which is widely used to determine these effective properties, is solely based on the volume fraction of these porous electrodes. However, other factors like the topology and microstructure of electrodes also play a crucial role in determining effective properties. In this paper, a general derivation of the effective thermal conductivity of multiphase materials, which can be correlated with these factors, is derived using the volume averaging technique. For demonstration, three-dimensional microstructures of various porous materials are reconstructed from scanned images. These images are used to generate fully-resolved finite volume meshes representing the various constituents. The resulting mesh is then employed for numerical analysis of thermal transport, results from which are used for correlating the effective thermal conductivity with various parameters describing the microstructure. It is shown that commonly used power law exponents in the Bruggeman model for effective thermal conductivity must be recalibrated to fit the effective thermal conductivity computed from these detailed simulations.


Author(s):  
Stephanie A. Wimmer ◽  
Virginia G. DeGiorgi ◽  
Edward P. Gorzkowski ◽  
Heonjune Ryou

Abstract Manufacturing methods to create ceramic coatings with tailored thermal conductivity are crucial to the development of thermal protection systems for many components including turbine blades in high temperature engines. A designed microstructure of grains, pores, and other defects can reduce the thermal conductivity of the ceramic. However, the same microstructure characteristics can reduce mechanical properties to the point of failure. This work is part of a larger program with the goal of optimizing ceramic coating microstructure for thermal protection while retaining sufficient mechanical strength for the intended application. Processing parameters have been examined to identify methods designed to maintain a nano-sized grain structure of yttria-stabilized zirconia while controlling the added porosity with a specific shape and size. In this paper computational modeling is used to evaluate the effects of porosity on coating performance, both thermal and structural. Coating porosity is incorporated in the computational models by randomly placing empty spaces or defects in the shape of spherical voids, oblate pores, or penny cracks. In addition to computational modeling, prototype coatings are developed in the laboratory with specific porosity. The size and orientation of defects in the computational modeling effort are statistically generated to match experiments. The locations of the defects are totally random. Finite element models are created which include various levels of porosity to calculate effective thermal and mechanical properties. Comparisons are made between three-dimensional finite-element simulations and measured data. The influences of pore size as well as three dimensional computational modeling artifacts are examined.


Sign in / Sign up

Export Citation Format

Share Document