Energy and exergy analysis of a heat storage tank with a novel eutectic phase change material layer of a solar heater system

2017 ◽  
Vol 14 (12) ◽  
pp. 1073-1080 ◽  
Author(s):  
Mert Gürtürk ◽  
Ahmet Koca ◽  
Hakan F. Öztop ◽  
Yasin Varol ◽  
Mehmet Şekerci
2017 ◽  
Vol 6 (3) ◽  
pp. 283
Author(s):  
Abdullah Nasrallh Olimat ◽  
Ahmad S Awad ◽  
Faisal M. AL-Gathain ◽  
Nabil Abo Shaban

This work presents an energy/exergy analysis to investige performance of thermal storage unit which loaded with a commercial phase change material (Plus ICE H190). The influence of fluid parameters on the energy/exergy effectiveness was examined. The temporal changes of the energy and exergy rate and performace of the storage unit are obtained  in the results. Latent heat principle is considered an efficient method to gain a higher effectiveness of system from an energy and exergy aspects. The fluid mass flow rate during charging and discharging periods were 2.50 kg/min and 1.26 kg/min, respectively. The results showed a significant increase of thermal resistance on the thermal storage unit performance. Fluid and phase change material show significant temperature difference on the rate of energy/exergy quantites and the time of melting or soldification. Ther results indicated that the average rate of energy and exergy were 1.3 kW and 0.54 kW, respectively. Wheras, energy and exergy  average rate during discarging periods were 1.1 kW and 0.31 kW, respectively. Also, the global rate during the experimetal periods were about 84% and 54%, respectively.Article History: Received July 6th 2017; Received in revised form September 15th 2017; Accepted 25th Sept 2017; Available onlineHow to Cite This Article: Olimat, A.N., Awad, A.S., Al-Gathain, F.M., and Shaban, N.A.. (2017) Performance of Loaded Thermal Storage Unit With A Commercial Phase Change Materials Based on Energy and Exergy Analysis. International Journal of Renewable Energy Develeopment, 6(3),283-290.https://doi.org/10.14710/ijred.6.3.283-290


Author(s):  
Ben Xu ◽  
Peiwen Li ◽  
Cholik Chan

With a large capacity thermal storage system using phase change material (PCM), Concentrated Solar Power (CSP) is a promising technology for high efficiency of solar energy utilization. In a thermal storage system, a dual-media thermal storage tank is typically adopted in industry for the purpose of reducing the use of the heat transfer fluid (HTF). While the dual-media sensible heat storage system has been well studied, a dual-media latent heat storage system (LHSS) still needs more attention and study; particularly, the sizing of volumes of storage tanks considering actual operation conditions is of significance. In this paper, a strategy for LHSS volume sizing is proposed, which is based on computations using an enthalpy-based 1D model. One example of 60MW solar thermal power plant with 35% thermal efficiency is presented. In the study, potassium hydroxide (KOH) is adopted as PCM and Therminol VP-1 is used as HTF. The operational temperatures of the storage system are 390°C and 310°C, respectively for the high and low temperatures. The system is assumed to operate for 100 days with 6 hours charge and 6 hours discharge every day. From the study, the needed height of the thermal storage tank is calculated from using the strategy of tank sizing. The method for tank volume sizing is of significance to engineering application.


Author(s):  
Abdullah Nasrallh Olimat ◽  
Ahmad S Awad ◽  
Nabil Abo shaban

This work presents an energy/exergy analysis to investige performance of thermal storage unit which loaded with a commercial phase change material (Plus ICE H190). The influence of fluid parameters on the energy/exergy effectiveness was examined. The temporal changes of the energy and exergy rate and performace of the storage unit are obtained  in the results. Latent heat principle is considered an efficient method to gain a higher effectiveness of system from an energy and exergy aspects. The fluid mass flow rate during charging and discharging periods were 2.50 kg/min and 1.26 kg/min, respectively. The results showed a significant increase of thermal resistance on the thermal storage unit performance. Fluid and phase change material show significant temperature difference on the rate of energy/exergy quantites and the time of melting or soldification. Ther results indicated that the average rate of energy and exergy were 1.3 kW and 0.54 kW, respectively. Wheras, energy and exergy  average rate during discarging periods were 1.1 kW and 0.31 kW, respectively. Also, the global rate during the experimetal periods were about 84% and 54%, respectively.


Desalination ◽  
2016 ◽  
Vol 381 ◽  
pp. 26-37 ◽  
Author(s):  
Mohamed Asbik ◽  
Omar Ansari ◽  
Abdellah Bah ◽  
Nadia Zari ◽  
Abdelaziz Mimet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document