energy balanced routing
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 12)

H-INDEX

9
(FIVE YEARS 3)

Algorithms ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 152
Author(s):  
Liangrui Tang ◽  
Zhilin Lu

Wireless sensor networks (WSNs) can provide data acquisition for long-term environment monitoring, which are important parts of Internet of Things (IoT). In the WSN-assisted IoT, energy efficient routing algorithms are required to maintain a long network lifetime. In this paper, a DS evidence theory-based energy balanced routing algorithm for network lifetime enhancement (EBRA-NLE) in WSN-assisted IOT is proposed. From the perspective of energy balance and minimization of routing path energy consumption, three attribute indexes are established to evaluate the forward neighboring nodes. Then a route selection method based on DS evidence theory is developed to comprehensively evaluate the nodes and select the optimal next hop. In order to avoid missing the ideal solution because of the excessive difference between the index values, the sine function is used to adjust this difference. The simulation results show that the proposed EBRA-NLE has certain advantages in prolonging network lifetime and balancing energy between nodes.


Wireless sensor networks (WSN) are gaining attention in numerous fields with the advent of embedded systems and IoT. Wireless sensors are deployed in environmental conditions where human intervention is less or eliminated. Since these are not human monitored, powering and maintaining the energy of the node is a challenging issue. The main research hotspot in WSN is energy consumption. As energy drains faster, the network lifetime also decreases. Self-Organizing Networks (SON) are just the solution for the above-discussed problem. Self-organizing networks can automatically configure themselves, find an optimalsolution, diagnose and self-heal to some extent. In this work, “Implementation of Enhanced AODV based Self-Organized Tree for Energy Balanced Routing in Wireless Sensor Networks” is introduced which uses self-organization to balance energy and thus reduce energy consumption. This protocol uses combination of number of neighboring nodes and residual energy as the criteria for efficient cluster head election to form a tree-based cluster structure. Threshold for residual energy and distance are defined to decide the path of the data transmission which is energy efficient. The improvement made in choosing robust parameters for cluster head election and efficient data transmission results in lesser energy consumption. The implementation of the proposed protocol is carried out in NS2 environment. The experiment is conducted by varying the node density as 20, 40 and 60 nodes and with two pause times 5ms, 10ms. The analysis of the result indicates that the new system consumes 17.6% less energy than the existing system. The routing load, network lifetime metrics show better values than the existing system.


Author(s):  
Senchun Chai ◽  
Zhaoyang Wang ◽  
Baihai Zhang ◽  
Lingguo Cui ◽  
Runqi Chai

Author(s):  
Pan Feng ◽  
Danyang Qin ◽  
Ping Ji ◽  
Min Zhao ◽  
Ruolin Guo ◽  
...  

Abstract Considering the insufficient global energy consumption optimization of the existing routing algorithms for Underwater Wireless Sensor Network (UWSN), a new algorithm, named improved energy-balanced routing (IEBR), is designed in this paper for UWSN. The algorithm includes two stages: routing establishment and data transmission. During the first stage, a mathematical model is constructed for transmission distance to find the neighbors at the optimal distances and the underwater network links are established. In addition, IEBR will select relays based on the depth of the neighbors, minimize the hops in a link based on the depth threshold, and solve the problem of data transmission loop. During the second stage, the links built in the first stage are dynamically changed based on the energy level (EL) differences between the neighboring nodes in the links, so as to achieve energy balance of the entire network and extend the network lifetime significantly. Simulation results show that compared with other typical energy-balanced routing algorithms, IEBR presents superior performance in network lifetime, transmission loss, and data throughput.


2019 ◽  
Vol 9 (16) ◽  
pp. 3251 ◽  
Author(s):  
Runze Wu ◽  
Haobo Guo ◽  
Liangrui Tang ◽  
Bing Fan

Recent progress in wireless charging technologies has greatly promoted the development of rechargeable wireless sensor networks (RWSN). The network lifetime of RWSN can be commonly extended through routing strategy and wireless charging technology. However, the node accepts the relay request of its neighbor unconditionally, and it cannot remove its overload on its own in a timely manner in traditional routing strategies. The energy balancing efficiency of the network may be limited by this passive mechanism, which poses a great challenge to obtaining optimal joint efficiency of routing and charging strategies. In this paper, we propose an autonomous load regulation mechanism-based energy balanced routing algorithm (ALRMR) for RWSN. In addition to an efficient framework of joint wireless energy transfer and multi-hop routing where the routing strategy is adapted to the charging scheme, an innovative load regulation mechanism is proposed. Under this mechanism, each node can actively adjust its own load by controlling its relay radius. The simulation demonstrates the advantages of our algorithm for energy balance efficiency and improving the network lifetime through the charging scheme and the innovative mechanism.


2019 ◽  
Vol 9 (10) ◽  
pp. 2133 ◽  
Author(s):  
Liangrui Tang ◽  
Zhiyi Chen ◽  
Jinqi Cai ◽  
Haobo Guo ◽  
Runze Wu ◽  
...  

The network lifetime of wireless rechargeable sensor network (WRSN) is commonly extended through routing strategy or wireless charging technology. In this paper, we propose an optimization algorithm from the aspects of both charging and routing process. To balance the network energy in charging part, node’s charging efficiency is balanced by dynamically planning charging point positions and the charging time is allocated according to the energy consumption rate of nodes. Moreover, the routing method is adapted to the node’s charging efficiency. The adaptive routing strategy assigns more forwarding tasks to nodes that can get more energy during the charging phase, and makes the data packets transmit farther away, thus reducing the average hops and energy consumption of the network. Finally, the simulation results reveal that the proposed algorithm has certain advantages in prolonging the network lifetime, reducing the average hop counts and balancing the energy of each node.


2019 ◽  
Vol 32 (9) ◽  
pp. e3949 ◽  
Author(s):  
Vishal Kumar Arora ◽  
Vishal Sharma ◽  
Monika Sachdeva

Sign in / Sign up

Export Citation Format

Share Document