To What Extent Do Tree Size, Climate and Land Use Influence the Fruit Production of Balanites aegyptiaca (L) Delile in Tropical Areas (Burkina Faso)?

2019 ◽  
Vol 20 (3) ◽  
pp. 282-299 ◽  
Author(s):  
Sambo Ouédraogo ◽  
Loyapin Bondé ◽  
Oumarou Ouédraogo ◽  
Amadé Ouédraogo ◽  
Adjima Thiombiano ◽  
...  
Climate ◽  
2014 ◽  
Vol 3 (1) ◽  
pp. 63-77 ◽  
Author(s):  
Benewinde Zoungrana ◽  
Christopher Conrad ◽  
Leonard Amekudzi ◽  
Michael Thiel ◽  
Evariste Da

Life ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 408
Author(s):  
Gizachew Zeleke ◽  
Tatek Dejene ◽  
Wubalem Tadesse ◽  
Pablo Martín-Pinto

In this study, we evaluated stand status, dendrometric variables, and fruit production of Tamarind (Tamarindus indica L.) trees growing in bushland and farmland-use types in dryland areas of Ethiopia. The vegetation survey was conducted using the point-centered quarter method. The fruit yield of 54 trees was also evaluated. Tree density and fruit production in ha were estimated. There was a significant difference in Tamarind tree density between the two land-use types (p = 0.01). The mean fruit yield of farmland trees was significantly higher than that of bushland trees. However, Tamarind has unsustainable structure on farmlands. Differences in the dendrometric characteristics of trees were also observed between the two land-use types. Predictive models were selected for Tamarind fruit yield estimations in both land-use types. Although the majority of farmland trees produced <5000 fruit year−1, the selection of Tamarind germplasm in its natural ranges could improve production. Thus, the development of management plans to establish stands that have a more balanced diameter structure and thereby ensure continuity of the population and fruit yields is required in this area, particularly in the farmlands. This baseline information could assist elsewhere in areas that are facing similar challenges for the species due to land-use change.


Plant Disease ◽  
2015 ◽  
Vol 99 (1) ◽  
pp. 14-20 ◽  
Author(s):  
C. A. Ellison ◽  
A. Sawadogo ◽  
S. Braman ◽  
S. Nacro

A new disease was identified on the biofuel crop Jatropha curcas in 2012 in Burkina Faso that is causing serious yield losses. The disease was found to be widespread in both Sissili and Comoé Provinces. It causes characteristic leaf lesions, fruit necrosis, and cankers on young stems and branches. There was evidence of multiple infections on plants over the growing season, with regrowth evident from below old cankers, but there was little fruit production from infected branches. A detailed monitoring and assessment was undertaken of the disease progress in a severely infected field, over a 7-week period. The disease symptoms progressed from chlorosis through a necrotic phase and, in approximately 83% of replicates, stem cankers developed that resulted in dieback and lodging of branches. Colletotrichum truncatum and a member of the species complex C. gloeosporioides sensu lato were consistently isolated from fresh stem samples showing early symptoms (chlorosis). Koch's postulates were undertaken, to establish the pathogenicity of the two species. No symptoms were observed on plants inoculated with C. gloeosporioides; however, leaf and stem lesions developed after inoculation with C. truncatum, which was reisolated from the diseased tissue, confirming it as the disease-causing agent. Preliminary management practices for the disease are proposed.


2016 ◽  
Vol 6 (1) ◽  
pp. 110 ◽  
Author(s):  
Sophie A. KIMA ◽  
A. A OKHIMAMHE ◽  
Andre KIEMA

<p class="1Body">Conversion of pastures to cropland is one of the most important issues facing livestock farming in Burkina Faso. This study examined the impact of land use/cover change on pastoral livestock farming in Boulgou province between 1980 and 2013. Landsat satellite images (1989, 2001 and 2013) and socio-economic data were analysed. The interpretation of the classified Landsat images revealed an increase in cropland from 20.5% in 1989 to 36.7% in 2013. This resulted mainly from the conversion of woody savannah and shrub and grass savannah to cropland. Pastoral livestock farmers reported that the major drivers of vegetation loss were drought (95.1 %), population growth (91.8%), cropland increase (91.4%), extraction of fuel wood (69.8%) and increase in livestock population (65.4). These changes affect livestock farming through reduction of pasture, poor access to water and reduction of livestock mobility routes according to the farmers. This calls for regional and national policies to protect grazing areas in Burkina Faso that are similar to policies being implemented for forest and other types of vegetation cover in other countries. For such pastoral policies to be successful, issues concerning the mobility of livestock farmers must be enshrined into such policies and this study is an example of information source for these policies.</p>


2019 ◽  
pp. 1-7

To understand how various factors influence phenological patterns like fruit production and the extent of phenological variability as survival strategy in different environments, fruit production of shea trees was studied in different agroclimatic zones (North Sudanian, South Sudanian and North Guinean) in Mali. Three sites were selected for this study and in each site; two stands (field and fallow) were concerned. For each stand, three “land use history or land management" i.e. new fields/fallows (1-5 years), medium (6-10 years) and old (10 years) were considered and permanent plots of 0.25 ha were established. 60 adult shea trees (DBH) ≥ 10 cm) were selected by site and monitored for fruit production assessment. The nested analysis of variance on the yield showed a significant site effect and significant effect of land use history within stand. However, stand effect within site was not significant. Factors like site and land management (land use history) appear to be determinant for fruit production of V. paradoxa. The site of Mperesso in the South Sudanian zone showed the highest fruit mean yield (11 kg/tree), significantly higher than the fruit mean yield observed at Daelan (7 kg/tree) in the North Sudanian zone and that observed at Nafégué (6 kg/tree) in the North Guinean zone. For field stand, old fields showed highest mean yield in all sites. For fallow stand, old fallows showed the lowest mean yield in most of cases. Different pattern was observed between field and fallow stands regarding the effect of land management. More fields are aged, more they influence positively fruit production whereas more fallows are aged, and more they influence negatively fruit production. This study highlighted the importance of land management practices and therefore, any domestication program to be successful should consider the potential effect of management practices.


2019 ◽  
Vol 11 (21) ◽  
pp. 5908 ◽  
Author(s):  
Wendpouiré Arnaud Zida ◽  
Babou André Bationo ◽  
Jean-Philippe Waaub

The 1970s–1980s droughts in the Sahel caused a significant degradation of land and plant cover. To cope with this situation, populations have developed several biophysical and social adaptation practices. Many of these are agroforestry practices and contribute to the maintenance of agrosystems. Unfortunately, they remain insufficiently documented and their contributions to the resilience of agrosystems insufficiently evaluated. Many authors widely link the regreening in the Sahel after droughts to the resumption of rainfall. This study examines the contribution of agroforestry practices to the improvement of woody plant cover in the North of Burkina Faso after the 1970s–1980s droughts. The examination of practices is carried out by integrating the rainfall, soil, and geomorphology variables. Landsat images are used to detect changes in woody plant cover: increasing, decreasing, and no-change in the Enhanced Vegetation Index. In addition, 230 field observations, coupled with interviews conducted on the different categories of change, have allowed to characterize the biophysical environment and identify land-use practices. The results show a variability of vegetation index explained to 9% (R2 = 0.09) by rainfall. However, Chi-Squared independence tests show a strong dependence between changes in woody plant cover and geomorphology (p = 0.0018 *), land use, land cover (p = 0.0001 *), and land-use practices (p = 0.0001 *). Our results show that rainfall alone is not enough to explain the dynamics of agrosystems’ woody plant cover. Agricultural and social practices related to the dynamics of farmer perceptions play a key role.


Sign in / Sign up

Export Citation Format

Share Document