scholarly journals First Report of Colletotrichum truncatum Causing Stem Cankers on Jatropha curcas in Burkina Faso

Plant Disease ◽  
2015 ◽  
Vol 99 (1) ◽  
pp. 14-20 ◽  
Author(s):  
C. A. Ellison ◽  
A. Sawadogo ◽  
S. Braman ◽  
S. Nacro

A new disease was identified on the biofuel crop Jatropha curcas in 2012 in Burkina Faso that is causing serious yield losses. The disease was found to be widespread in both Sissili and Comoé Provinces. It causes characteristic leaf lesions, fruit necrosis, and cankers on young stems and branches. There was evidence of multiple infections on plants over the growing season, with regrowth evident from below old cankers, but there was little fruit production from infected branches. A detailed monitoring and assessment was undertaken of the disease progress in a severely infected field, over a 7-week period. The disease symptoms progressed from chlorosis through a necrotic phase and, in approximately 83% of replicates, stem cankers developed that resulted in dieback and lodging of branches. Colletotrichum truncatum and a member of the species complex C. gloeosporioides sensu lato were consistently isolated from fresh stem samples showing early symptoms (chlorosis). Koch's postulates were undertaken, to establish the pathogenicity of the two species. No symptoms were observed on plants inoculated with C. gloeosporioides; however, leaf and stem lesions developed after inoculation with C. truncatum, which was reisolated from the diseased tissue, confirming it as the disease-causing agent. Preliminary management practices for the disease are proposed.

1969 ◽  
Vol 80 (3) ◽  
pp. 135-143
Author(s):  
Rocío del P. Rodríguez ◽  
Luis Sánchez ◽  
Wigmar González ◽  
Osvaldo Bosques

Stem cankers and root rot of coffee plants were detected in the nurseries. Proliferation of adventitious roots at the base of the stems was also observed. Several fungi were isolated from the root and stem lesions and pathogenicity trials were conducted under the humid conditions of the shadehouse. Typical disease symptoms were reproduced by Myrothecium roridum and Rhizoctonia solani in the root and in the stem of the inoculated plants.


2021 ◽  
Author(s):  
Alizèta Sawadogo ◽  
Issaka Zida ◽  
Marc Kenis ◽  
Souleymane Nacro

Abstract In Burkina Faso, the leaf beetle Aphthona whitfieldi is the main insect pest of the biofuel plant Jatropha curcas. The beetle affects plant growth and seed yield, but the impact on yield has never been properly quantified. This study was conducted on-station and on-farm in the district of Léo, southern Burkina Faso, in 2015. It aimed at evaluating the yield losses that A. whitfieldi inflicts to J. curcas. The first experiment used 25 caged trees in their first year of fruit production, on which various amounts of beetles were released. When 200 beetles were released, the defoliation level reached 55% and caused 61% of yield loss. Releases of 400 or more beetles caused a defoliation level of at least 74% and seed losses of 98%. On-farm observations were made on attack levels and seed yields in three different types of plantations, i.e. pure plantations, plantations intercropped with food crops and hedges. These observations showed that defoliation levels over 50% were common in the three types of plantations, resulting in very low yields. This study shows the importance of beetle damage in the cultivation of J. curcas. This is likely one of the reasons for the very low yields, which, among other causes, led to the abandonment of J. curcas plantations in the region.


Plant Disease ◽  
2009 ◽  
Vol 93 (9) ◽  
pp. 912-918 ◽  
Author(s):  
Tatiana V. Roubtsova ◽  
Richard M. Bostock

Phytophthora ramorum attacks many forest and nursery species, primarily causing trunk or stem cankers, foliar blight, and dieback, and in some species root infection has been demonstrated. However, the abiotic and edaphic factors that influence infection and disease development are unresolved. Root infection by P. ramorum and the potential for mild abiotic stress in disease predisposition was examined with Rhododendron hybrid Cunningham's White and Viburnum tinus cv. Spring Bouquet. To impose water stress in a uniform and synchronous manner, osmotic stress induced with 0.2 M NaCl was selected. Roots were exposed to NaCl for 16 to 24 h in modified hydroponic culture or standard potting soil, removed from the NaCl, and then inoculated with zoospores. In the hydroponic regime, disease symptoms developed in Rhododendron and V. tinus plants within 1 week after inoculation of salt-stressed roots, whereas symptom development was delayed in nonstressed, inoculated plants. Microscopic examination of roots from both species revealed that their apices were covered with sporangia of P. ramorum. On potted Rhododendron plants inoculated by applying zoospores directly to the soil, stem lesions developed rapidly in salt-stressed plants, with death of the plant occurring within 4 weeks after inoculation. Nonstressed plants survived for 6 to 8 weeks before succumbing to disease, and symptom development in these plants was delayed by 1 to 2 weeks relative to the inoculated, salt-stressed plants. A postinfection episode of salt stress to inoculated roots in the hydroponic regime resulted in significantly faster development of stem lesions in Rhododendron relative to nonstressed, inoculated plants.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 498e-498
Author(s):  
S. Paramasivam ◽  
A.K. Alva

For perennial crop production conditions, major portion of nutrient removal from the soil-tree system is that in harvested fruits. Nitrogen in the fruits was calculated for 22-year-old `Hamlin' orange (Citrus sinensis) trees on Cleopatra mandarin (Citrus reticulata) rootstock, grown in a Tavares fine sand (hyperthermic, uncoated, Typic Quartzipsamments) that received various N rates (112, 168, 224, and 280 kg N/ha per year) as either i) broadcast of dry granular form (DGF; four applications/year), or ii) fertigation (FRT; 15 applications/year). Total N in the fruits (mean across 4 years) varied from 82 to 110 and 89 to 111 kg N/ha per year for the DGF and FRT sources, respectively. Proportion of N in the fruits in relation to N applied decreased from 74% to 39% for the DGF and from 80% to 40% for the FRT treatments. High percentage of N removal in the fruits in relation to total N applied at low N rates indicate that trees may be depleting the tree reserve for maintaining fruit production. This was evident, to some extent, by the low leaf N concentration at the low N treatments. Furthermore, canopy density was also lower in the low N trees compared to those that received higher N rates.


2021 ◽  
Vol 13 (15) ◽  
pp. 8460
Author(s):  
Armel Rouamba ◽  
Hussein Shimelis ◽  
Inoussa Drabo ◽  
Mark Laing ◽  
Prakash Gangashetty ◽  
...  

Pearl millet (Pennisetum glaucum) is a staple food crop in Burkina Faso that is widely grown in the Sahelian and Sudano-Sahelian zones, characterised by poor soil conditions and erratic rainfall, and high temperatures. The objective of this study was to document farmers’ perceptions of the prevailing constraints affecting pearl millet production and related approaches to manage the parasitic weeds S. hermonthica. The study was conducted in the Sahel, Sudano-Sahelian zones in the North, North Central, West Central, Central Plateau, and South Central of Burkina Faso. Data were collected through a structured questionnaire and focus group discussions involving 492 participant farmers. Recurrent drought, S. hermonthica infestation, shortage of labour, lack of fertilisers, lack of cash, and the use of low-yielding varieties were the main challenges hindering pearl millet production in the study areas. The majority of the respondents (40%) ranked S. hermonthica infestation as the primary constraint affecting pearl millet production. Respondent farmers reported yield losses of up to 80% due to S. hermonthica infestation. 61.4% of the respondents in the study areas had achieved a mean pearl millet yields of <1 t/ha. Poor access and the high cost of introduced seed, and a lack of farmers preferred traits in the existing introduced pearl millet varieties were the main reasons for their low adoption, as reported by 32% of respondents. S. hermonthica management options in pearl millet production fields included moisture conservation using terraces, manual hoeing, hand weeding, use of microplots locally referred to as ‘zaï’, crop rotation and mulching. These management techniques were ineffective because they do not suppress the below ground S. hermonthica seed, and they are difficult to implement. Integrated management practices employing breeding for S. hermonthica resistant varieties with the aforementioned control measures could offer a sustainable solution for S. hermonthica management and improved pearl millet productivity in Burkina Faso.


1986 ◽  
Vol 66 (2) ◽  
pp. 273-285 ◽  
Author(s):  
J. F. DORMAAR ◽  
C. W. LINDWALL ◽  
G. C. KOZUB

A field was artificially eroded by levelling in 1957 and then continuously cropped to barley for 7 yr. Subsequently, a wheat-fallow experiment was conducted from 1965 to 1979 to determine the effects of four fertilizer treatments and green manure (yellow sweet clover) on restoring the productivity to soil that had been "eroded" to various depths. After 22 yr and 14 crops, the productivity of the land from which soil was removed has been improved but not fully restored. Although green manuring with yellow sweet clover improved soil structure, wheat yields were not improved because of competition for soil moisture and poorer in-crop weed control in this part of the rotation. The addition of 45 kg N plus 90 kg P2O5 per hectare in each crop year to sites from which 8–10, 10–20, or 46 + cm of soil had been removed resulted in yield increases of 18, 46, and 70%, respectively, over the unfertilized check of each treatment; the average yields were 104, 91, and 70%, respectively, of the undisturbed, unfertilized (check) treatment. On "erosion" treatments where only 8–10 cm of soil were removed, 45 kg N plus 22 kg P2O5 per hectare were sufficient to restore the productivity. Precipitation apparently had a greater effect than fertilizer application on wheat yields. The loss of organic matter and associated soil structure characteristics seemed to be critical factors contributing to yield losses associated with soil erosion. These results show that it is more practical to use management practices that prevent soil erosion than to adopt the practices required to restore eroded soil. Key words: Soil erosion, topsoil loss, water-stable aggregates, soil organic matter, green manure, precipitation


2019 ◽  
pp. 1-7

To understand how various factors influence phenological patterns like fruit production and the extent of phenological variability as survival strategy in different environments, fruit production of shea trees was studied in different agroclimatic zones (North Sudanian, South Sudanian and North Guinean) in Mali. Three sites were selected for this study and in each site; two stands (field and fallow) were concerned. For each stand, three “land use history or land management" i.e. new fields/fallows (1-5 years), medium (6-10 years) and old (10 years) were considered and permanent plots of 0.25 ha were established. 60 adult shea trees (DBH) ≥ 10 cm) were selected by site and monitored for fruit production assessment. The nested analysis of variance on the yield showed a significant site effect and significant effect of land use history within stand. However, stand effect within site was not significant. Factors like site and land management (land use history) appear to be determinant for fruit production of V. paradoxa. The site of Mperesso in the South Sudanian zone showed the highest fruit mean yield (11 kg/tree), significantly higher than the fruit mean yield observed at Daelan (7 kg/tree) in the North Sudanian zone and that observed at Nafégué (6 kg/tree) in the North Guinean zone. For field stand, old fields showed highest mean yield in all sites. For fallow stand, old fallows showed the lowest mean yield in most of cases. Different pattern was observed between field and fallow stands regarding the effect of land management. More fields are aged, more they influence positively fruit production whereas more fallows are aged, and more they influence negatively fruit production. This study highlighted the importance of land management practices and therefore, any domestication program to be successful should consider the potential effect of management practices.


1990 ◽  
Vol 115 (2) ◽  
pp. 245-251 ◽  
Author(s):  
J.O. Payero ◽  
M.S. Bhangoo ◽  
J.J. Steiner

The effects of six applied N treatments differing by rates and frequencies of application on the yield and quality of pepper (Capsicum annuum var. annuum L. `Anaheim Chili') grown for seed was studied. The timing of N applications was based on crop phenology, leaf petiole nitrate-nitrogen concentrations (NO3-N) minimum thresholds, and scheduled calendar applications of fixed amounts of N. Solubilized NH4NO3 was applied through a trickle-irrigation system to ensure uniform and timely applications of N. Rate of mature (green and red) fruit production was unaffected by any treatment except weekly applications of 28 kg·ha-1 of N, which stopped production of mature fruit before all other treatments. Early season floral bud and flower production increased with increasing amounts of N. The two highest total N treatments produced more floral buds and flowers late in the season than the other treatments. Total fruit production was maximized at 240 kg N/ha. Differences in total fruit production due to frequency of N application resulted at the highest total N level. Red fruit production tended to be maximized with total seasonal applied N levels of 240 kg·ha-1 and below, although weekly applications of N reduced production. Total seed yield was a function of red fruit production. Pure-1ive seed (PLS) production was a function of total seed production. Nitrogen use efficiency (NUE) for red fruit production also decreased with N rates >240 kg·ha-1, but PLS yield and NUE decreased in a near-linear fashion as the amount of total seasonal applied N increased, regardless of application frequency. Season average NO3-N (AVE NO3-N) values >4500 mg·kg-1 had total seed and PLS yields less than those treatments <4000 mg·kg-1. Six-day germination percentage was reduced with weekly N applications of 14 kg·ha-1. Seed mass was reduced with weekly N applications of 28 kg·ha-1. Final germination percent, seedling root length and weight, and field emergence were unaffected by any of the N treatments. These findings indicate that different N management strategies are needed to maximize seed yield compared to fruit yield and, therefore, there may be an advantage to growing `Anaheim Chili' pepper specifically for seed.


2014 ◽  
Vol 32 (2) ◽  
pp. 255-265 ◽  
Author(s):  
Omar Montenegro R. ◽  
Stanislav Magnitskiy ◽  
Martha C. Henao T.

This study was conducted to assess fruit and seed yield, oil content and oil composition of Jatropha curcas fertilized with different doses of nitrogen and potassium in Espinal (Tolima, Colombia). The yields ranged from 4,570 to 8,800 kg ha-1 of fruits and from 2,430 to 4,746 kg ha-1 of seeds. These yields showed that the fertilizer dose of 150 kg ha-1 N + 120 kg ha-1K increased fruit production by 92% and seed production by 95%, which represents an increase of about 100% in oil production, which increased from 947 to 1,900 kg ha-1. The total oil content in the seeds ranged from 38.7 to 40.1% (w/w) with a high content of the unsaturated fatty acids oleic (> 47%) and linoleic acid (> 29%). The highest content of oleic acid in the seed oil was from the unfertilized control plants and plants with an application of 100 kg ha-1 of N and 60 kg ha-1 of K, with an average of 48%. The lowest content of oleic acid was registered when a low dose of nitrogen and a high level of potassium were applied at a ratio of 1:2.4 and doses of 50 kg ha-1 N + 120 kg ha-1 K, respectively. Low contents of the saturated fatty acids palmitic (13.4%) and stearic (7.26%) were obtained, making this oil suitable for biodiesel production. The nitrogen was a more important nutrient for the production and quality of oil in J. curcas than potassium under the studied conditions of soil and climate.


Sign in / Sign up

Export Citation Format

Share Document