Computational modeling of biodiesel production using supercritical methanol

Author(s):  
Alireza Baghban
2016 ◽  
Vol 113 ◽  
pp. 23-30 ◽  
Author(s):  
V.M. Ortiz-Martínez ◽  
M.J. Salar-García ◽  
F.J. Palacios-Nereo ◽  
P. Olivares-Carrillo ◽  
J. Quesada-Medina ◽  
...  

2015 ◽  
Vol 140 ◽  
pp. 252-261 ◽  
Author(s):  
Debora L. Manuale ◽  
Gerardo C. Torres ◽  
Carlos R. Vera ◽  
Juan C. Yori

2009 ◽  
Vol 100 (8) ◽  
pp. 2399-2403 ◽  
Author(s):  
Novy Srihartati Kasim ◽  
Tsung-Han Tsai ◽  
Setiyo Gunawan ◽  
Yi-Hsu Ju

2015 ◽  
Vol 781 ◽  
pp. 655-658 ◽  
Author(s):  
Thakun Sawiwat ◽  
Somjai Kajorncheappunngam

Synthesis of biodiesel from rubber seed oil using a supercritical methanol was investigated under various reaction conditions (220 - 300°C, 80 - 180 bar) with reaction time of 1-15 min and oil:methanol molar ratio of 1:20 - 1:60. Free fatty acid methyl esters (FAMEs) content were analyzed by gas chromatography-mass spectroscopy (GC-MS). Most properties of produced biodiesel were in good agreement with biodiesel standard (EN 14214). The maximum FAME yield of 86.90% was obtained at 260°C, 160 bar, 5 min reaction time using oil:methanol molar ratio of 1:40. The result showed the acid value of rubber seed oil decreased to 0.58 mgKOH/g from initial 24 mgKOH/g to. It could be concluded from this findings that crude rubber seed oil is a promising alternative raw material for biodiesel synthesis via supercritical methanol tranesterification.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Chao-Yi Wei ◽  
Tzou-Chi Huang ◽  
Ho-Hsien Chen

Transesterification of oils and lipids in supercritical methanol is commonly carried out in the absence of a catalyst. In this work, supercritical methanol, carbon dioxide, and acetic acid were used to produce biodiesel from soybean oil. Supercritical carbon dioxide was added to reduce the reaction temperature and increase the fats dissolved in the reaction medium. Acetic acid was added to reduce the glycerol byproduct and increase the hydrolysis of fatty acids. The Taguchi method was used to identify optimal conditions in the biodiesel production process. With an optimal reaction temperature of 280°C, a methanol-to-oil ratio of 60, and an acetic acid-to-oil ratio of 3, a 97.83% yield of fatty acid methyl esters (FAMEs) was observed after 90 min at a reaction pressure of 20 MPa. While the common approach to biodiesel production results in a glycerol byproduct of about 10% of the yield, the practices reported in this research can reduce the glycerol byproduct by 30.2% and thereby meet international standards requiring a FAME content of >96%.


2011 ◽  
Vol 25 (6) ◽  
pp. 2746-2748 ◽  
Author(s):  
Shimin Kang ◽  
Xianglan Li ◽  
Biao Li ◽  
Juan Fan ◽  
Jie Chang

Sign in / Sign up

Export Citation Format

Share Document