Techno-economic assessment of gas pressure-based electricity generation (A case study of Iran)

Author(s):  
Ali Rahmatpour ◽  
Mohammad Javad Shaibani
2021 ◽  
Author(s):  
Arletis Cruz Llerena ◽  
Osney Perez Ones ◽  
Lourdes Zumalacárregui de Cárdenas ◽  
José Luis Pérez de los Ríos

Abstract Purpose Vinasse is one of the organic industrial effluents with major polluting effect. The objective of this work was to perform a techno-economic assessment of vinasses treatment alternatives for valorization of this waste through process simulation with Aspen Hysys v10.0. Methods Four alternatives were studied: (A_1) incineration and electricity generation, (A_2) desalinization, (A_3) anaerobic digestion and electricity generation and (A_4) drying. The selected packages for the evaluation and prediction of properties were: Lee-Kesler-Plöcker and NBS Steam, NRTL-Ideal, Peng-Robinson-Stryjer-Vera and NBS Steam and NRTL-Ideal respectively; the validation in these cases was carried out with data reported in the literature. The economic evaluation was carried according to the changes that each alternative determines in each one of the elements of effective cash flow comparing with the actual condition. Results With the alternative A_1, fertilizers ashes are obtained removing all the residual and the energy generation. By the alternative A_2, fertilizers salts and desalinate vinasses (for animal food) were obtained. By the alternative A_3, energy is generated from biogas. By the alternative A_4, dry vinasse is obtained which is used as fertilizer and animal food. Conclusion The polluting effect of the vinasse can be reduced with the proposed treatment alternatives. It was showed that the alternatives are feasible, being the alternative A_1 the best, with a NPV of $ 1.29 MMUSD, IRR 25.5% and DPBP 2.7 years. Process simulation are a valuable supporting tool when making decisions in investment projects for valorization of vinasse from the ethanol industry.


TAPPI Journal ◽  
2012 ◽  
Vol 11 (8) ◽  
pp. 17-24 ◽  
Author(s):  
HAKIM GHEZZAZ ◽  
LUC PELLETIER ◽  
PAUL R. STUART

The evaluation and process risk assessment of (a) lignin precipitation from black liquor, and (b) the near-neutral hemicellulose pre-extraction for recovery boiler debottlenecking in an existing pulp mill is presented in Part I of this paper, which was published in the July 2012 issue of TAPPI Journal. In Part II, the economic assessment of the two biorefinery process options is presented and interpreted. A mill process model was developed using WinGEMS software and used for calculating the mass and energy balances. Investment costs, operating costs, and profitability of the two biorefinery options have been calculated using standard cost estimation methods. The results show that the two biorefinery options are profitable for the case study mill and effective at process debottlenecking. The after-tax internal rate of return (IRR) of the lignin precipitation process option was estimated to be 95%, while that of the hemicellulose pre-extraction process option was 28%. Sensitivity analysis showed that the after tax-IRR of the lignin precipitation process remains higher than that of the hemicellulose pre-extraction process option, for all changes in the selected sensitivity parameters. If we consider the after-tax IRR, as well as capital cost, as selection criteria, the results show that for the case study mill, the lignin precipitation process is more promising than the near-neutral hemicellulose pre-extraction process. However, the comparison between the two biorefinery options should include long-term evaluation criteria. The potential of high value-added products that could be produced from lignin in the case of the lignin precipitation process, or from ethanol and acetic acid in the case of the hemicellulose pre-extraction process, should also be considered in the selection of the most promising process option.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1172
Author(s):  
Hafiz Haq ◽  
Petri Välisuo ◽  
Seppo Niemi

Industrial symbiosis networks conventionally provide economic and environmental benefits to participating industries. However, most studies have failed to quantify waste management solutions and identify network connections in addition to methodological variation of assessments. This study provides a comprehensive model to conduct sustainable study of industrial symbiosis, which includes identification of network connections, life cycle assessment of materials, economic assessment, and environmental performance using standard guidelines from the literature. Additionally, a case study of industrial symbiosis network from Sodankylä region of Finland is implemented. Results projected an estimated life cycle cost of €115.20 million. The symbiotic environment would save €6.42 million in waste management cost to the business participants in addition to the projected environmental impact of 0.95 million tonne of CO2, 339.80 tonne of CH4, and 18.20 tonne of N2O. The potential of further cost saving with presented optimal assessment in the current architecture is forecast at €0.63 million every year.


Heliyon ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. e06911
Author(s):  
Peiman Dadkani ◽  
Esmatullah Noorzai ◽  
AmirHossein Ghanbari ◽  
Ali Gharib

Sign in / Sign up

Export Citation Format

Share Document