scholarly journals Future paths for the ‘exploitative segregation of plant roots’ model

2021 ◽  
pp. 1891755
Author(s):  
Ciro Cabal ◽  
Ricardo Martinez-Garcia ◽  
Aurora de Castro ◽  
Fernando Valladares ◽  
Stephen W. Pacala
Keyword(s):  
Author(s):  
Saravanakumar A ◽  
Gandhimathi R

Polygonum glabrum is being used in traditional and folklore medicine to treat pneumonia and jaundice. Plant roots are used in ayurvedic preparations to treat fever and colic. The leaves are used as diuretic agents and process vermifuge action. Plant decoction is also used in the treatment of Rheumatism. Besides having many uses and folklore claims, herbal medicines are to be thoroughly investigated for their toxicity also. Therefore this work is being carried out to examine the toxicity of the drug and established dose is safe to use in the clinical stage. The current research studied the acute and chronic toxicity of Polygonum glabrum root extract in rats. It is proved that there was no change in any parameter tested both in acute and chronic toxicity, which means the extract is safe and non-toxic at the dose of 2g/kg also.


Biomics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 329-336
Author(s):  
A.R. Lubyanova ◽  
F.M. Shakirova ◽  
M.V. Bezrukova

We studied the immunohistochemical localization of abscisic acid (ABA), wheat germ agglutinin (WGA) and dehydrins in the roots of wheat seedlings (Triticum aestivum L.) during 24-epibrassinolide-pretreatment (EB-pretreatment) and PEG-induced dehydration. It was found coimmunolocalization of ABA, WGA and dehydrins in the cells of central cylinder of basal part untreated and EB-pretreated roots of wheat seedlings under normal conditions and under osmotic stress. Such mutual localization ABA and protective proteins, WGA and dehydrins, indicates the possible effect of their distribution in the tissues of EB-pretreated wheat roots during dehydration on the apoplastic barrier functioning, which apparently contributes to decrease the water loss under dehydration. Perhaps, the significant localization of ABA and wheat lectin in the metaxylem region enhances EB-induced transport of ABA and WGA from roots to shoots under stress. It can be assumed that brassinosteroids can serve as intermediates in the realization of the protective effect of WGA and wheat dehydrins during water deficit.


2021 ◽  
Author(s):  
David Gomez‐Zepeda ◽  
Moises Frausto ◽  
Héctor‐Rogelio Nájera‐González ◽  
Luis Herrera‐Estrella ◽  
José‐Juan Ordaz‐Ortiz

Rhizosphere ◽  
2021 ◽  
pp. 100352
Author(s):  
Christian W. Kuppe ◽  
Gregor Huber ◽  
Johannes A. Postma

Author(s):  
Hamidreza Ardalani ◽  
Fatemeh Hejazi Amiri ◽  
Amin Hadipanah ◽  
Kenneth T. Kongstad

Abstract Background Medicinal plants are used to treat various disorders, including diabetes, globally in a range of formulations. While attention has mainly been on the aerial plant parts, there are only a few review studies to date that are focused on the natural constituents present in the plant roots with health benefits. Thus, the present study was performed to review in vivo studies investigating the antidiabetic potential of the natural compounds in plant roots. Methods We sorted relevant data in 2001–2019 from scientific databases and search engines, including Web of Knowledge, PubMed, ScienceDirect, Medline, Reaxys, and Google Scholar. The class of phytochemicals, plant families, major compounds, active constituents, effective dosages, type of extracts, time of experiments, and type of diabetic induction were described. Results In our literature review, we found 104 plants with determined antidiabetic activity in their root extracts. The biosynthesis pathways and mechanism of actions of the most frequent class of compounds were also proposed. The results of this review indicated that flavonoids, phenolic compounds, alkaloids, and phytosteroids are the most abundant natural compounds in plant roots with antidiabetic activity. Phytochemicals in plant roots possess different mechanisms of action to control diabetes, including inhibition of α-amylase and α-glucosidase enzymes, oxidative stress reduction, secretion of insulin, improvement of diabetic retinopathy/nephropathy, slow the starch digestion, and contribution against hyperglycemia. Conclusion This review concludes that plant roots are a promising source of bioactive compounds which can be explored to develop against diabetes and diabetes-related complications. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document