scholarly journals The study on surface integrity on laser-assisted turning of SiCp/2024Al

2020 ◽  
Vol 14 (1) ◽  
pp. 29-43
Author(s):  
Changtai Zhai ◽  
Jinkai Xu ◽  
Yiquan Li ◽  
Yonggang Hou ◽  
Shuaishuai Yuan ◽  
...  
2021 ◽  
Vol 61 ◽  
pp. 173-189
Author(s):  
Farzad Ahmadi Khatir ◽  
Mohammad Hossein Sadeghi ◽  
Samet Akar

2013 ◽  
Vol 763 ◽  
pp. 91-106 ◽  
Author(s):  
N.M. Warap ◽  
Zazuli Mohid ◽  
Erween Abdul Rahim

Laser assisted machining is categorized in preheat machining process. The laser beam used to heat up work materials is very flexible in providing a localized heat area. However the combination between two processes which has totally different fundamental has contributed to complex processing characteristics. In the case of hard to machined metal processing, problems in surface integrity and accuracy are frequently arise. Tool ware and work material properties changes are some of the issue that drove engineers and researchers to seek for optimized processing parameters. This chapter introduces resent finding in research done on laser assisted machining (LAM). Focus is given on laser assisted mechanical machining consist of laser assisted milling (LAM) and laser assisted turning (LAT).


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110112
Author(s):  
Li Xun ◽  
Wang Ziming ◽  
Yang Shenliang ◽  
Guo Zhiyuan ◽  
Zhou Yongxin ◽  
...  

Titanium alloy Ti1023 is a typical difficult-to-cut material. Tool wear is easy to occur in machining Ti1023, which has a significant negative effect on surface integrity. Turning is one of the common methods to machine Ti1023 parts and machined surface integrity has a direct influence on the fatigue life of parts. To control surface integrity and improve anti-fatigue behavior of Ti1023 parts, it has an important significance to study the influence of tool wear on the surface integrity and fatigue life of Ti1023 in turning. Therefore, the effect of tool wear on the surface roughness, microhardness, residual stress, and plastic deformation layer of Ti1023 workpieces by turning and low-cycle fatigue tests were studied. Meanwhile, the influence mechanism of surface integrity on anti-fatigue behavior also was analyzed. The experimental results show that the change of surface roughness caused by worn tools has the most influence on anti-fatigue behavior when the tool wear VB is from 0.05 to 0.25 mm. On the other hand, the plastic deformation layer on the machined surface could properly improve the anti-fatigue behavior of specimens that were proved in the experiments. However, the higher surface roughness and significant surface defects on surface machined utilizing the worn tool with VB = 0.30 mm, which leads the anti-fatigue behavior of specimens to decrease sharply. Therefore, to ensure the anti-fatigue behavior of parts, the value of turning tool wear VB must be rigorously controlled under 0.30 mm during finishing machining of titanium alloy Ti1023.


2021 ◽  
Vol 288 ◽  
pp. 125580
Author(s):  
Adam Race ◽  
Iwona Zwierzak ◽  
Jack Secker ◽  
Jonathan Walsh ◽  
Julia Carrell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document