scholarly journals Case-based reasoning to support decision making for managing drinking water quality events in distribution systems

2015 ◽  
Vol 13 (7) ◽  
pp. 727-738 ◽  
Author(s):  
S.R. Mounce ◽  
R.B. Mounce ◽  
J.B. Boxall
2019 ◽  
Vol 17 (4) ◽  
pp. 517-531 ◽  
Author(s):  
Ntombie Thandazile Mhlongo ◽  
Memory Tekere ◽  
Timothy Sibanda

Abstract Insufficient potable water resources and poorly treated drinking water quality are the world's number one cause for preventable morbidity and mortality from water-related pathogenic microorganisms. Pathogenic microorganisms, including mycotoxigenic fungi, have been identified in treated drinking water. This paper presents a review of mycotoxigenic fungi as a health risk to the public as these fungi are responsible for allergies, cancers and opportunistic infections mainly to immunocompromised patients. The exacerbating factors contributing to fungal presence in water distribution systems, factors that lead to fungi being resistant to water treatment and treated drinking water quality legislations are also discussed. This paper provides a review on the prevalence of mycotoxigenic fungi and their implications to public health in treated drinking water, and the need for inclusion in treated drinking water quality regulations.


2017 ◽  
Vol 3 (5) ◽  
pp. 865-874 ◽  
Author(s):  
Zhiheng Xu ◽  
Wangchi Zhou ◽  
Qiuchen Dong ◽  
Yan Li ◽  
Dingyi Cai ◽  
...  

Drinking water quality along distribution systems is critical for public health.


2017 ◽  
Vol 7 (1.1) ◽  
pp. 47 ◽  
Author(s):  
S. Kavi Priya ◽  
G. Shenbagalakshmi ◽  
T. Revathi

Drinking Water Distribution Systems facilitate to carry portable water from water resources such as reservoirs, river, and water tanks to industrial, commercial and residential consumers through complex buried pipe networks. Determining the consequences of a water contamination event is an important concern in the field of water systems security and in drinking water distribution systems. The proposed work is based on the development of low cost fuzzy based water quality monitoring system using wireless sensor networks which is capable of measuring physiochemical parameters of water quality such as pH, temperature, conductivity, oxidation reduction potential and turbidity. Based on selected parameters a sensing unit is developed along with several microsystems for analog signal conditioning, data aggregation, sensor data analysis and logging, and remote representation of data to the consumers. Finally, algorithms for fusing the real time data and decision making using fuzzy logic at local level are developed to assess the water contamination risk. Based on the water contamination level in the distribution pipeline the drinking water quality is classified as acceptable/reject/desirable. When the contamination is detected, the sensing unit with ZigBee sends signals to close the solenoid valve inside the pipeline to prevent the flow of contaminated water supply and it intimates the consumers about drinking water quality through mobile app. Experimental results indicate that this low cost real time water quality monitoring system acts as an ideal early warning system with best detection accuracy. The derived solution can also be applied to different IoT (Internet of Things) scenario such as smart cities, the city transport system etc.


2015 ◽  
Vol 56 (13) ◽  
pp. 3447-3455 ◽  
Author(s):  
Rocío Álvarez-Arroyo ◽  
Fátima Rojas-Serrano ◽  
Gloria Garralón ◽  
Fidel Plaza ◽  
Jorge Ignacio Pérez Pérez ◽  
...  

2021 ◽  
Author(s):  
Bayable Atanfu ◽  
Adey Desta ◽  
Fassil Assefa

Abstract Understanding ecology of microbiomes in drinking water distribution systems is the most important notion in delivering safe drinking water. Despite cultivation-based methods routinely employed in monitoring drinking water quality, cultivation of specific indicator organisms alone is not always guarantee for assuring safe drinking water delivery. The presence of complex microbiomes in drinking water distribution systems affects treatment effectiveness leading to poor quality water which as a result affects health of human and animals. Drinking water treatment and distribution systems harbor various microbiota despite efforts made in improving water infrastructures and several waterborne diseases become serious problems in the water industry, specially, in developing Countries. Intermittent water supply, long-time of water storage, low water pressure in distribution systems, storage tankers and pipes as well as contaminated source water are among many of the factors responsible for low drinking water quality which in turn affecting health of people. The aim of this study was to explore microbial diversity and structure in water samples collected from source water, treated water, reservoirs, and several household points of use locations (taps). High throughput Illumina sequencing technology was employed by targeting V4 region of 16S rRNA following Illumina protocol to analyze the community structure of bacteria. The core dominating taxa were Proteobacteria followed by Firmicutes, Bacteroidetes and Actinobacteria. Gamma proteobacteria were dominant among other Proteobacterial classes across all sampling points. Opportunistic bacterial genera such as Pseudomonas, Legionella, Klebsiella, Escherichia, Actinobacteria, as well as eukaryotic microbes like Cryptosporidium, Hartmanella, Acanthamoeba, Aspergillus, and Candida were also the abundant taxa found along the distribution systems. The shift in microbial community structure from source to point of use locations were influenced by factors such as residual free chlorine, intermittent water supply and long-time storage at the household. The shift in microbial community structure from source to point of use locations were influenced by factors such as residual free chlorine, intermittent water supply and long-time storage at the household. The complex microbiota which was present in different sample sites receiving treated water from the two treatment plants (Legedadi and Gefersa) starting from source water to household point of consumption across the distribution systems in Addis Ababa brings drinking water quality problem which further causes significant health problems to both human and animal health. Treatment ineffectiveness, disinfection inefficiency, poor maintenance actions, leakage of sewage and other domestic wastes are few among many other factors responsible for degraded drinking water quality in this study putting health at high risk which, this, leads to morbidity and mortality. Findings of this research provide important and bassline information to understand the microbial profiles of drinking water along source water and distribution systems.


2021 ◽  
Author(s):  
Bayable Atanfu ◽  
Adey Desta ◽  
Fassil Assefa

Abstract BackgroundUnderstanding ecology of microbiomes in drinking water distribution systems is the most important notion in delivering safe drinking water. Despite cultivation-based methods routinelyemployed in monitoring drinking water quality, cultivation of specific indicator organisms alone is not always guarantee for assuring safe drinking water delivery. The presence of complex microbiomes in drinking water distribution systems affects treatment effectiveness leading to poor quality water which as a result affects health of human and animals. Drinking water treatment and distribution systems harbor various microbiota despite efforts made in improving water infrastructures and several waterborne diseases become serious problems in the water industry, specially, in developing Countries. Intermittent water supply, long-time of water storage, low water pressure in distribution systems, storage tankers and pipes as well as contaminated source water are among many of the factors responsible for low drinking water quality which in turn affecting health of people. The aim of this study was to explore microbial diversity and structure in water samples collected from source water, treated water, reservoirs, and several household points of use locations (taps). High throughput Illumina sequencing technology was employed by targeting V4 region of 16S rRNA following Illumina protocol to analyze the community structure of bacteria. ResultsThe core dominating taxa were Proteobacteria followed by Firmicutes, Bacteroidetes and Actinobacteria. Gamma proteobacteria were dominant among other Proteobacterial classes across all sampling points. Opportunistic bacterial genera such as Pseudomonas, Legionella, Klebsiella, Escherichia, Actinobacteria, as well as eukaryotic microbes like Cryptosporidium, Hartmanella, Acanthamoeba, Aspergillus, and Candida were also the abundant taxa found alongthe distribution systems. The shift in microbial community structure from source to point of uselocations were influenced by factors such as residual free chlorine, intermittent water supply andlong-time storage at the household. The shift in microbial community structure from source to point of use locations were influenced by factors such as residual free chlorine, intermittent water supply and long-time storage at the household.ConclusionsThe complex microbiota which was present in different sample sites receiving treated water from the two treatment plants (Legedadi and Gefersa) starting from source water to household point of consumption across the distribution systems in Addis Ababa brings drinking water quality problem which further causes significant health problems to both human and animal health. Treatment ineffectiveness, disinfection inefficiency, poor maintenance actions, leakage of sewage and other domestic wastes are few among many other factors responsible for degraded drinking water quality in this study putting health at high risk which, this, leads to morbidity and mortality. Findings of this research provide important and bassline information to understand the microbial profiles of drinking water along source water and distribution systems.


Sign in / Sign up

Export Citation Format

Share Document