scholarly journals The Coupled Model Predictability of the Western North Pacific Summer Monsoon with Different Leading Times

2012 ◽  
Vol 5 (3) ◽  
pp. 219-224 ◽  
Author(s):  
Lu Ri-Yu ◽  
Li Chao-Fan ◽  
Se Hwan Yang ◽  
Buwen Dong
2016 ◽  
Vol 29 (7) ◽  
pp. 2457-2469 ◽  
Author(s):  
Ke Xu ◽  
Riyu Lu

Abstract The modulation of tropical cyclone (TC) activity by the western North Pacific (WNP) monsoon break is investigated by analyzing the subseasonal evolution of TCs and corresponding circulations, based on 65 years of data from 1950 to 2014. The monsoon break has been identified as occurring over the WNP in early August. The present results show that TC occurrence decreases (increases) remarkably to the east of the Mariana Islands (southeast of Japan) during the monsoon break, which is closely related to local anomalous midtropospheric downward (upward) motion and lower-tropospheric anticyclonic (cyclonic) circulation, in comparison with the previous and subsequent convective periods in late July and mid-August. These changes of TC activity and the corresponding circulation during the monsoon break are more significant in typical monsoon break years when the monsoon break phenomenon is predominant. The reverse changes of TC activity to the east of the Mariana Islands and to the southeast of Japan during the monsoon break are closely associated with the out-of-phase subseasonal evolutions over these two regions from late July to mid-August, which are both contributed to greatly by 10–25-day oscillations. Finally, the roles of midlatitude and tropical disturbances on 10–25-day oscillations are also discussed.


2009 ◽  
Vol 66 (9) ◽  
pp. 2697-2713 ◽  
Author(s):  
Hai Lin

Abstract Global teleconnections associated with the Asian summer monsoon convective activities are investigated based on monthly data of 29 Northern Hemisphere summers defined as June–September (JJAS). Two distinct teleconnection patterns are identified that are associated respectively with variabilities of the Indian summer monsoon and the western North Pacific summer monsoon. The Indian summer monsoon convective activity is associated with a global pattern that has a far-reaching connection in both hemispheres, whereas the western North Pacific summer monsoon convective activity is connected to a Southern Hemisphere wave train that influences the high-latitude South Pacific and South America. A global primitive equation model is utilized to assess the cause of the global circulation anomalies. The model responses to anomalous heatings of both monsoon systems match the general features of the observed circulation anomalies well, and they are mainly controlled by linear processes. The response patterns are largely determined by the summertime large-scale background mean flow and the location of the heating anomaly relative to the upper easterly jet in the monsoon region.


2014 ◽  
Vol 27 (10) ◽  
pp. 3643-3664 ◽  
Author(s):  
June-Yi Lee ◽  
Bin Wang ◽  
Kyong-Hwan Seo ◽  
Jong-Seong Kug ◽  
Yong-Sang Choi ◽  
...  

Abstract Two dominant global-scale teleconnections in the Northern Hemisphere (NH) extratropics during boreal summer season (June–August) have been identified: the western North Pacific–North America (WPNA) and circumglobal teleconnection (CGT) patterns. These teleconnection patterns are of critical importance for the NH summer seasonal climate prediction. Here, how these teleconnections will change under anthropogenic global warming is investigated using representative concentration pathway 4.5 (RCP4.5) experiments by 20 coupled models that participated in phase 5 of the Coupled Model Intercomparison Project (CMIP5). The six best models are selected based on their performance in simulation of the two teleconnection patterns and climatological means and variances of atmospheric circulation, precipitation, and sea surface temperature. The selected models capture the CGT and its relationship with the Indian summer monsoon (ISM) reasonably well. The models can also capture the WPNA circulation pattern but with striking deficiencies in reproducing its associated rainfall anomalies due to poor simulation of the western North Pacific summer monsoon rainfall. The following changes are anticipated in the latter half of twenty-first century under the RCP4.5 scenario: 1) significant weakening of year-to-year variability of the upper-level circulation due to increased atmospheric stability, although the moderate increase in convective heating over the tropics may act to strengthen the variability; 2) intensification of the WPNA pattern and major spectral peaks, particularly over the eastern Pacific–North America and North Atlantic–Europe sectors, which is attributed to the strengthening of its relationship with the preceding mature phase of El Niño–Southern Oscillation (ENSO); and 3) weakening of the CGT due to atmospheric stabilization and decreasing relationship with ISM as well as weakening of the ISM–ENSO relationship.


Sign in / Sign up

Export Citation Format

Share Document