Analytical study of SH wave scattering by a cylindrical cavity in the two-dimensional and approximately linear inhomogeneous medium

Author(s):  
Guan-xi-xi Jiang ◽  
Zai-lin Yang ◽  
Cheng Sun ◽  
Yun-qiu Song ◽  
Yong Yang
Geophysics ◽  
1985 ◽  
Vol 50 (8) ◽  
pp. 1273-1284 ◽  
Author(s):  
V. Shtivelman

This paper follows previous work (Shtivelman, 1984) in which a hybrid method for wave‐field computation was developed. The method combines analytical and numerical techniques and is based upon separation of the processes of wave scattering and wave propagation. The method is further developed and improved; particularly, it is generalized for the case of an inhomogeneous medium above scattering objects (provided the inhomogeneity is weak, i.e., the effects of scattering can be neglected) and is represented by a simpler and more convenient form. Several numerical examples illustrating application of the method to the problems of two‐dimensional acoustic modeling are considered.


2017 ◽  
Vol 228 (10) ◽  
pp. 3469-3481 ◽  
Author(s):  
Zai-lin Yang ◽  
Chong-qun Zhang ◽  
Guan-xi-xi Jiang ◽  
Pei-lei Yan ◽  
Yong Yang

Author(s):  
Neander Berto Mendes ◽  
Lineu José Pedroso ◽  
Paulo Marcelo Vieira Ribeiro

ABSTRACT: This work presents the dynamic response of a lock subjected to the horizontal S0E component of the El Centro earthquake for empty and completely filled water chamber cases, by coupled fluid-structure analysis. Initially, the lock was studied by approximation, considering it similar to the case of a double piston coupled to a two-dimensional acoustic cavity (tank), representing a simplified analytical model of the fluid-structure problem. This analytical formulation can be compared with numerical results, in order to qualify the responses of the ultimate problem to be investigated. In all the analyses performed, modeling and numerical simulations were done using the finite element method (FEM), supported by the commercial software ANSYS.


2017 ◽  
Vol 5 (1) ◽  
pp. 45-50
Author(s):  
Myron Voytko ◽  
◽  
Yaroslav Kulynych ◽  
Dozyslav Kuryliak

The problem of the elastic SH-wave diffraction from the semi-infinite interface defect in the rigid junction of the elastic layer and the half-space is solved. The defect is modeled by the impedance surface. The solution is obtained by the Wiener- Hopf method. The dependences of the scattered field on the structure parameters are presented in analytical form. Verifica¬tion of the obtained solution is presented.


2012 ◽  
Vol 08 ◽  
pp. 364-367
Author(s):  
YOSUKE MIZUNO ◽  
MARTIN POHL ◽  
JACEK NIEMIEC ◽  
BING ZHANG ◽  
KEN-ICHI NISHIKAWA ◽  
...  

We perform two-dimensional relativistic magnetohydrodynamic simulations of a mildly relativistic shock propagating through an inhomogeneous medium. We show that the postshock region becomes turbulent owing to preshock density inhomogeneity, and the magnetic field is strongly amplified due to the stretching and folding of field lines in the turbulent velocity field. The amplified magnetic field evolves into a filamentary structure in two-dimensional simulations. The magnetic energy spectrum is flatter than the Kolmogorov spectrum and indicates that the so-called small-scale dynamo is occurring in the postshock region. We also find that the amplitude of magnetic-field amplification depends on the direction of the mean preshock magnetic field.


Sign in / Sign up

Export Citation Format

Share Document