Nonlocal thermo-hydro-mechanical (THM) coupling dynamic response of saturated porous thermoelastic media with temperature-dependent physical properties

Author(s):  
Minjie Wen ◽  
Kuihua Wang ◽  
Juntao Wu ◽  
Houren Xiong
2018 ◽  
Vol 22 (3) ◽  
pp. 658-688 ◽  
Author(s):  
Nguyen Dinh Duc ◽  
Ngo Duc Tuan ◽  
Pham Hong Cong ◽  
Ngo Dinh Dat ◽  
Nguyen Dinh Khoa

Based on the first order shear deformation shell theory, this paper presents an analysis of the nonlinear dynamic response and vibration of imperfect eccentrically stiffened functionally graded material (ES-FGM) cylindrical panels subjected to mechanical, thermal, and blast loads resting on elastic foundations. The material properties are assumed to be temperature-dependent and graded in the thickness direction according to simple power-law distribution in terms of the volume fractions of the constituents. Both functionally graded material cylindrical panels and stiffeners having temperature-dependent properties are deformed under temperature, simultaneously. Numerical results for the dynamic response of the imperfect ES-FGM cylindrical panels with two cases of boundary conditions are obtained by the Galerkin method and fourth-order Runge–Kutta method. The results show the effects of geometrical parameters, material properties, imperfections, mechanical and blast loads, temperature, elastic foundations and boundary conditions on the nonlinear dynamic response of the imperfect ES-FGM cylindrical panels. The obtained numerical results are validated by comparing with other results reported in the open literature.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Peng Cao ◽  
Changjun Zhou ◽  
Decheng Feng ◽  
Youxuan Zhao ◽  
Baoshan Huang

Currently dynamic response of the pavement structure is widely studied in pavement engineering. A 3D direct vehicle-pavement coupling dynamic model was developed to describe the pavement dynamic responses in this paper. The moving vehicle was simplified as spring-dashpot components, and the pavement structure was simulated using three-dimension finite element model. Based on Newton iteration and central difference integration algorithm, the static and dynamic coupling reactions between the pavement structure and vehicle were considered using finite element platform ABAQUS. The numerical results fit analytic results very well in static analysis and fit experiment results in dynamic analysis well too. The simulated results indicate that the dynamic pavement surface deflection is much higher than the situation in static analysis, due to the overlapping effect. This phenomenon enhances when vehicle speed increases. A discontinuous zone of shear stress was observed on the base surface between the location under moving load and the location the moving load just passed. It was also found that the vertical fluctuation exists on the vehicle even if there is no roughness on the pavement surface. In general, the developed 3-D direct vehicle-pavement coupling dynamic model was validated to be effective on evaluating pavement dynamic responses.


2013 ◽  
Vol 15 (3) ◽  
pp. 252-256 ◽  
Author(s):  
Tianyan Liu ◽  
Zhensheng Yuan ◽  
Yong Li ◽  
Zhenmao Chen ◽  
Wenjing Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document