Multiplicity of positive solutions to a critical fractional equation with Hardy potential and concave–convex nonlinearities

Author(s):  
Yansheng Shen
Author(s):  
Shaya Shakerian

In this paper, we study the existence and multiplicity of solutions for the following fractional problem involving the Hardy potential and concave–convex nonlinearities: [Formula: see text] where [Formula: see text] is a smooth bounded domain in [Formula: see text] containing [Formula: see text] in its interior, and [Formula: see text] with [Formula: see text] which may change sign in [Formula: see text]. We use the variational methods and the Nehari manifold decomposition to prove that this problem has at least two positive solutions for [Formula: see text] sufficiently small. The variational approach requires that [Formula: see text] [Formula: see text] [Formula: see text], and [Formula: see text], the latter being the best fractional Hardy constant on [Formula: see text].


Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 107
Author(s):  
Daliang Zhao ◽  
Juan Mao

In this paper, sufficient conditions ensuring existence and multiplicity of positive solutions for a class of nonlinear singular fractional differential systems are derived with Riemann–Stieltjes coupled integral boundary value conditions in Banach Spaces. Nonlinear functions f(t,u,v) and g(t,u,v) in the considered systems are allowed to be singular at every variable. The boundary conditions here are coupled forms with Riemann–Stieltjes integrals. In order to overcome the difficulties arising from the singularity, a suitable cone is constructed through the properties of Green’s functions associated with the systems. The main tool used in the present paper is the fixed point theorem on cone. Lastly, an example is offered to show the effectiveness of our obtained new results.


2012 ◽  
Vol 14 (03) ◽  
pp. 1250021 ◽  
Author(s):  
FRANCISCO ODAIR DE PAIVA

This paper is devoted to the study of existence, nonexistence and multiplicity of positive solutions for the semilinear elliptic problem [Formula: see text] where Ω is a bounded domain of ℝN, λ ∈ ℝ and g(x, u) is a Carathéodory function. The obtained results apply to the following classes of nonlinearities: a(x)uq + b(x)up and c(x)(1 + u)p (0 ≤ q < 1 < p). The proofs rely on the sub-super solution method and the mountain pass theorem.


Sign in / Sign up

Export Citation Format

Share Document