scholarly journals Discrete dynamical models on Wolbachia infection frequency in mosquito populations with biased release ratios

Author(s):  
Yantao Shi ◽  
Bo Zheng
Genetics ◽  
2003 ◽  
Vol 165 (4) ◽  
pp. 2029-2038 ◽  
Author(s):  
Jason L Rasgon ◽  
Thomas W Scott

AbstractBefore maternally inherited bacterial symbionts like Wolbachia, which cause cytoplasmic incompatibility (CI; reduced hatch rate) when infected males mate with uninfected females, can be used in a program to control vector-borne diseases it is essential to understand their dynamics of infection in natural arthropod vector populations. Our study had four goals: (1) quantify the number of Wolbachia strains circulating in the California Culex pipiens species complex, (2) investigate Wolbachia infection frequencies and distribution in natural California populations, (3) estimate the parameters that govern Wolbachia spread among Cx. pipiens under laboratory and field conditions, and (4) use these values to estimate equilibrium levels and compare predicted infection prevalence levels to those observed in nature. Strain-specific PCR, wsp gene sequencing, and crossing experiments indicated that a single Wolbachia strain infects Californian Cx. pipiens. Infection frequency was near or at fixation in all populations sampled for 2 years along a >1000-km north-south transect. The combined statewide infection frequency was 99.4%. Incompatible crosses were 100% sterile under laboratory and field conditions. Sterility decreased negligibly with male age in the laboratory. Infection had no significant effect on female fecundity under laboratory or field conditions. Vertical transmission was >99% in the laboratory and ∼98.6% in the field. Using field data, models predicted that Wolbachia will spread to fixation if infection exceeds an unstable equilibrium point above 1.4%. Our estimates accurately predicted infection frequencies in natural populations. If certain technical hurdles can be overcome, our data indicate that Wolbachia can invade vector populations as part of an applied transgenic strategy for vector-borne disease reduction.


2020 ◽  
Vol 17 (1) ◽  
pp. 21-29
Author(s):  
Sangami Pugazenthi ◽  
Phoebe White ◽  
Aakash Basu ◽  
Anoop Chandrashekar ◽  
Dylan Shropshire

Wolbachia (Rickettsiales: Anaplasmataceae) are maternally transmitted intracellular bacteria that infect approximately half of all insect species. These bacteria commonly act as reproductive parasites or mutualists to enhance their transmission from mother to offspring, resulting in high prevalence among some species. Despite decades of research on Wolbachia’s global frequency, there are many arthropod families and geographic regions that have not been tested for Wolbachia. Here, arthropods were collected on the Vanderbilt University campus in Nashville, Tennessee, where Wolbachia frequency has not been previously studied. The dataset consists of 220 samples spanning 34 unique arthropod families collected on the Vanderbilt University campus. The majority of our samples were from the families Blattidae (Blattodea), Pulicidae (Siphonaptera), Dryinidae (Hymenoptera), Aphididae (Hemiptera), Paronellidae (Entomobryomorpha), Formicidae (Hymenoptera), Pseudococcidae (Hemiptera), Sphaeroceridae (Diptera), and Coccinellidae (Coleoptera). PCR-based techniques were used to assign infection states and, from these data, the first cases of Wolbachia in the Paronellidae springtails, Lithobiidae (Lithobiomorpha) centipedes, Lonchopteridae (Diptera) spear-winged flies, Sepsidae (Diptera) black scavenger flies, Cryptocercidae (Blattodea) wood roaches, and Lauxaniidae (Diptera) acalyptrate flies were identified. Within-family infection frequencies ranged from 17-100% when Wolbachia was observed; however, numerous families tested did not reveal evidence of infection. These results expand on the field’s understanding of Wolbachia’sfrequencyin Nashville, Tennessee, and among arthropod families broadly, and is the first report of Wolbachia in centipedes. KEYWORDS: Wolbachia; Infection Frequency; Endosymbiont; Tennessee; Centipede; Arthropod; Polymerase Chain Reaction; Nashville


2021 ◽  
Author(s):  
Ehsan Sanaei ◽  
Yen-Po Lin ◽  
Lyn G Cook ◽  
Jan Engelstaedter

Wolbachia is one of the most successful endosymbiotic bacteria of arthropods. Known as the master of manipulation, Wolbachia can induce a wide range of phenotypes in its host that can have far-reaching ecological and evolutionary consequences and may be exploited for disease and pest control. However, our knowledge of Wolbachia's distribution and infection rate is unevenly distributed across arthropod groups such as scale insects. We fitted a distribution of within-species prevalence of Wolbachia to our data and compared it to distributions fitted to an up-to-date dataset compiled from surveys across all arthropods. The estimated distribution parameters indicate a Wolbachia infection frequency of 43.6% (at a 10% prevalence threshold) in scale insects. Prevalence of Wolbachia in scale insects follows a distribution similar to exponential decline (most species are predicted to have low prevalence infections), in contrast to the U-shaped distribution estimated for other taxa (most species have a very low or very high prevalence). We observed no significant associations between Wolbachia infection and scale insect traits. Finally, we screened for Wolbachia in scale insect's ecological associates. We found a positive correlation between Wolbachia infection in scale insects and their ant associates, pointing to a possible route of horizontal transfer of Wolbachia.


2021 ◽  
Vol 11 (1) ◽  
pp. 212-224
Author(s):  
Bo Zheng ◽  
Jianshe Yu

Abstract In this paper, we study a discrete model on Wolbachia infection frequency. Assume that a periodic and impulsive release strategy is implemented, where infected males are released during the first N generations with the release ratio α, and the release is terminated from (N + 1)-th generation to T-th generation. We find a release ratio threshold denoted by α *(N, T), and prove the existence of a T-periodic solution for the model when α ∈ (0, α *(N, T)). For the special case when N = 1 and T = 2, we prove that the model has a unique T-periodic solution which is unstable when α ∈ (0, α *(N, T)). While α ≥ α *(N, T), no periodic phenomenon occurs and the Wolbachia fixation equilibrium is globally asymptotically stable. Numerical simulations are also provided to illustrate our theoretical results. One main contribution of this work is to offer a new method to determine the exact number of periodic orbits to discrete models.


Insects ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 172 ◽  
Author(s):  
Martin Schebeck ◽  
Lukas Feldkirchner ◽  
Christian Stauffer ◽  
Hannes Schuler

Numerous terrestrial arthropods are infected with the alphaproteobacterium Wolbachia. This endosymbiont is usually transmitted vertically from infected females to their offspring and can alter the reproduction of hosts through various manipulations, like cytoplasmic incompatibility (CI), enhancing its spread in new host populations. Studies on the spatial and temporal dynamics of Wolbachia under natural conditions are scarce. Here, we analyzed Wolbachia infection frequencies in populations of the European cherry fruit fly, Rhagoletis cerasi (L.), in central Germany—an area of an ongoing spread of the CI-inducing strain wCer2. In total, 295 individuals from 19 populations were PCR-screened for the presence of wCer2 and their mitochondrial haplotype. Results were compared with historic data to understand the infection dynamics of the ongoing wCer2 invasion. An overall wCer2 infection frequency of about 30% was found, ranging from 0% to 100% per population. In contrast to an expected smooth transition from wCer2-infected to completely wCer2-uninfected populations, a relatively scattered infection pattern across geography was observed. Moreover, a strong Wolbachia-haplotype association was detected, with only a few rare misassociations. Our results show a complex dynamic of an ongoing Wolbachia spread in natural field populations of R. cerasi.


Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 853
Author(s):  
Nazar A. Shapoval ◽  
Seppo Nokkala ◽  
Christina Nokkala ◽  
Galina N. Kuftina ◽  
Valentina G. Kuznetsova

Wolbachia is one of the most common intracellular bacteria; it infects a wide variety of insects, other arthropods, and some nematodes. Wolbachia is ordinarily transmitted vertically from mother to offspring and can manipulate physiology and reproduction of their hosts in different ways, e.g., induce feminization, male killing, and parthenogenesis. Despite the great interest in Wolbachia, many aspects of its biology remain unclear and its incidence across many insect orders, including Hemiptera, is still poorly understood. In this report, we present data on Wolbachia infection in five jumping plant-lice species (Hemiptera, Psylloidea) of the genus Cacopsylla Ossiannilsson, 1970 with different reproductive strategies and test the hypothesis that Wolbachia mediates parthenogenetic and bisexual patterns observed in some Cacopsylla species. We show that the five species studied are infected with a single Wolbachia strain, belonging to the supergroup B. This strain has also been found in different insect orders (Lepidoptera, Hemiptera, Plecoptera, Orthoptera, Hymenoptera, Diptera) and even in acariform mites (Trombidiformes), suggesting extensive horizontal transmission of Wolbachia between representatives of these taxa. Our survey did not reveal significant differences in infection frequency between parthenogenetic and bisexual populations or between males and females within bisexual populations. However, infection rate varied notably in different Cacopsylla species or within distinct populations of the same species. Overall, we demonstrate that Wolbachia infects a high proportion of Cacopsylla individuals and populations, suggesting the essential role of this bacterium in their biology.


Sign in / Sign up

Export Citation Format

Share Document