Incorporating DeepLabv3+ and object-based image analysis for semantic segmentation of very high resolution remote sensing images

Author(s):  
Shouji Du ◽  
Shihong Du ◽  
Bo Liu ◽  
Xiuyuan Zhang
2020 ◽  
Vol 12 (18) ◽  
pp. 2935
Author(s):  
Zixia Tang ◽  
Mengmeng Li ◽  
Xiaoqin Wang

Tea is an important economic plant, which is widely cultivated in many countries, particularly in China. Accurately mapping tea plantations is crucial in the operations, management, and supervision of the growth and development of the tea industry. We propose an object-based convolutional neural network (CNN) to extract tea plantations from very high resolution remote sensing images. Image segmentation was performed to obtain image objects, while a fine-tuned CNN model was used to extract deep image features. We conducted feature selection based on the Gini index to reduce the dimensionality of deep features, and the selected features were then used for classifying tea objects via a random forest. The proposed method was first applied to Google Earth images and then transferred to GF-2 satellite images. We compared the proposed classification with existing methods: Object-based classification using random forest, Mask R-CNN, and object-based CNN without fine-tuning. The results show the proposed method achieved a higher classification accuracy than other methods and produced smaller over- and under-classification geometric errors than Mask R-CNN in terms of shape integrity and boundary consistency. The proposed approach, trained using Google Earth images, achieved comparable results when transferring to the classification of tea objects from GF-2 images. We conclude that the proposed method is effective for mapping tea plantations using very high-resolution remote sensing images even with limited training samples and has huge potential for mapping tea plantations in large areas.


2019 ◽  
Vol 1 ◽  
pp. 1-8
Author(s):  
Ankita Medhi ◽  
Ashis Kumar Saha

<p><strong>Abstract.</strong> Rural roads in India have been considered as significant component for overall rural development. In India, the status of rural road connectivity is not up to the mark in some of the states. For providing better connectivity in the rural areas the information on roads are considered important. Detailed mapping of the roads can be useful for planning further road connectivity and proving access to facilities in the rural areas. For detailed mapping of roads higher resolution satellite imageries are required. Object based Image Analysis (OBIA) has emerged as a promising map analysis approach using high and very high resolution imageries. Feature extraction is one of the important aspect in OBIA extracting features such as roads, buildings, water bodies and other important features of interest from the high resolution imageries. In the present study, an attempt has been made to extract rural roads of Titabor in Jorhat district of Assam (India). Various OBIA based extraction methods have been used for extracting roads using high &amp; very high resolution Resourcesat-II (5.8&amp;thinsp;m) and Kompsat imagery (2.8&amp;thinsp;m MS &amp;amp; 0.7&amp;thinsp;m PAN). The results have been compared and relative advantages were evaluated.</p>


Author(s):  
Aybek Arifjanov ◽  
Shamshodbek Akmalov ◽  
Tursunoy Apakhodjaeva ◽  
Dilmira Tojikhodjaeva

Currently, more than 300 satellites have been launched into space and providing us with information about the Earth and processes which happens in there. Those information is very useful in all branches. These satellites started to modify and modernize year by year. Especially after 2000, satellites of very high resolution were launched into space. These satellites are sending information with very high resolution. To improve the speed and accuracy of the analysis of these images, scientists have developed a number of methods and programs. As a result, users often find face to difficulties with knowing which method or program is most effective. In this article, analyzed many researches and scientific studies and analyzed WorldView-2 (WV2) images of the Syrdarya Province based on field experiments and outlined the advantages and disadvantages of the method and tool. WV2 images are very important and provide much relevant data for all image analysis. VHR of these images can increase the quality and possibilities of all analysis. But usage of these images globally has not developed because of their costs. Square of satellite image capturing is very little for global analysis. to do global analysis we need 100 s of this image. That is why scientists use this data more often for correlation or creating general methods. That is why it has not been used for regional and global analysis. In our research, we used GEOBIA’s eCognition software. The accuracy of this program is 95 %. In arid regions like Uzbekistan, we recommend optimal software, analyse steps and data.


Sign in / Sign up

Export Citation Format

Share Document