Sea ice conditions and navigability through the Northeast Passage in the past 40 years based on remote-sensing data

Author(s):  
Miao Yu ◽  
Peng Lu ◽  
Zhiyuan Li ◽  
Zhijun Li ◽  
Qingkai Wang ◽  
...  
Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 417 ◽  
Author(s):  
Mohamed Abdelkareem ◽  
Fathy Abdalla ◽  
Samar Y. Mohamed ◽  
Farouk El-Baz

At present, the Arabian Peninsula is one of the driest regions on Earth; however, this area experienced heavy rainfall in the past thousand years. During this period, catchments received substantial amounts of surface water and sustained vast networks of streams and paleolakes, which are currently inactive. The Advanced Land Observing Satellite (ALOS) Phased Array Type L-band Synthetic Aperture Radar (PALSAR) data reveal paleohydrologic features buried under shallow aeolian deposits in many areas of the ad-Dawasir, Sahba, Rimah/Batin, and as-Sirhan wadis. Optical remote-sensing data support that the middle of the trans-peninsula Wadi Rimah/Batin, which extends for ~1200 km from the Arabian Shield to Kuwait and covers ~200,000 km2, is dammed by linear sand dunes formed by changes in climate conditions. Integrating Landsat 8 Operational Land Imager (OLI), Geo-Eye, Shuttle Radar Topography Mission (SRTM) digital elevation model, and ALOS/PALSAR data allowed for the characterization of paleodrainage reversals and diversions shaped by structural and volcanic activity. Evidence of streams abruptly shifting from one catchment to another is preserved in Wadi ad-Dawasir along the fault trace. Volcanic activity in the past few thousand years in northern Saudi Arabia has also changed the slope of the land and reversed drainage systems. Relics of earlier drainage directions are well maintained as paleoslopes and wide upstream patterns. This study found that paleohydrologic activity in Saudi Arabia is impacted by changes in climate and by structural and volcanic activity, resulting in changes to stream direction and activity. Overall, the integration of radar and optical remote-sensing data is significant for deciphering past hydrologic activity and for predicting potential water resource areas.


2015 ◽  
Vol 6 (4) ◽  
pp. 330-347 ◽  
Author(s):  
Qingke Wen ◽  
Zengxiang Zhang ◽  
Xiaoli Zhao ◽  
Ling Yi ◽  
Xiao Wang ◽  
...  

2000 ◽  
Vol 31 ◽  
pp. 327-332 ◽  
Author(s):  
Ronald L. S. Weaver ◽  
Konrad Steffen ◽  
John Heinrichs ◽  
James A. Maslanik ◽  
Gregory M. Flato

AbstractThe detection of small changes in concentration or thickness in the Arctic or Antarctic ice cover is an important topic in the current global-climate-change debate. Change detection using satellite data alone requires rigorous error analysis for their derived ice products, including inter-satellite validation for long time series. All models of physical processes are only approximations, and the best models of complicated physical processes have errors and uncertainties. A promising approach is data assimilation, combining model, in situ data and satellite remote-sensing data. Sea-ice monitoring from satellite, ice-model estimates, and the potential benefit of combining the two are discussed in some detail. In a case-study we demonstrate how the sea-ice backscatter for the Beaufort Sea region was derived using a backscattering model in combination with an ice model. We conclude that, for data assimilation, the first steps include the use of simple models, moving, with success at this level, to progressively more complex models. We also recommend reconfiguring the current remote-sensing data to include precise time tags with each pixel. For example, the current Special Sensor Microwave Imager data might be reissued in a time-tagged orbital (or gridded) format as opposed to the currently available daily averaged gridded data. Finally, error statistics and quality-control information also need to be readily available in a form useful for assimilation. The effectiveness of data-assimilation techniques is directly linked to the availability of data error statistics.


Sign in / Sign up

Export Citation Format

Share Document