scholarly journals Gamma-Ray Scattering from Point Sources by Infinite Plane Surfaces

1968 ◽  
Vol 5 (3) ◽  
pp. 98-103
Author(s):  
Mitsuyuki KITAZUME
Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 220
Author(s):  
Emil Khalikov

The intrinsic spectra of some distant blazars known as “extreme TeV blazars” have shown a hint at an anomalous hardening in the TeV energy region. Several extragalactic propagation models have been proposed to explain this possible excess transparency of the Universe to gamma-rays starting from a model which assumes the existence of so-called axion-like particles (ALPs) and the new process of gamma-ALP oscillations. Alternative models suppose that some of the observable gamma-rays are produced in the intergalactic cascades. This work focuses on investigating the spectral and angular features of one of the cascade models, the Intergalactic Hadronic Cascade Model (IHCM) in the contemporary astrophysical models of Extragalactic Magnetic Field (EGMF). For IHCM, EGMF largely determines the deflection of primary cosmic rays and electrons of intergalactic cascades and, thus, is of vital importance. Contemporary Hackstein models are considered in this paper and compared to the model of Dolag. The models assumed are based on simulations of the local part of large-scale structure of the Universe and differ in the assumptions for the seed field. This work provides spectral energy distributions (SEDs) and angular extensions of two extreme TeV blazars, 1ES 0229+200 and 1ES 0414+009. It is demonstrated that observable SEDs inside a typical point spread function of imaging atmospheric Cherenkov telescopes (IACTs) for IHCM would exhibit a characteristic high-energy attenuation compared to the ones obtained in hadronic models that do not consider EGMF, which makes it possible to distinguish among these models. At the same time, the spectra for IHCM models would have longer high energy tails than some available spectra for the ALP models and the universal spectra for the Electromagnetic Cascade Model (ECM). The analysis of the IHCM observable angular extensions shows that the sources would likely be identified by most IACTs not as point sources but rather as extended ones. These spectra could later be compared with future observation data of such instruments as Cherenkov Telescope Array (CTA) and LHAASO.


Geophysics ◽  
1997 ◽  
Vol 62 (5) ◽  
pp. 1369-1378 ◽  
Author(s):  
Georg F. Schwarz ◽  
Ladislaus Rybach ◽  
Emile E. Klingelé

Airborne radiometric surveys are finding increasingly wider applications in environmental mapping and monitoring. They are the most efficient tool to delimit surface contamination and to locate lost radioactive sources. To secure radiometric capability in survey and emergency situations, a new sensitive airborne system has been built that includes an airborne spectrometer with 256 channels and a sodium iodide detector with a total volume of 16.8 liters. A rack mounted PC with memory cards is used for data acquisition, with a GPS satellite navigation system for positioning. The system was calibrated with point sources using a mathematical correction to take into account the effects of gamma‐ray scattering in the ground and in the atmosphere. The calibration was complemented by high precision ground gamma spectrometry and laboratory measurements on rock samples. In Switzerland, two major research programs make use of the capabilities of airborne radiometric measurements. The first one concerns nuclear power plant monitoring. The five Swiss nuclear installations (four power plants and one research facility) and the surrounding regions of each site are surveyed annually. The project goal is to monitor the dose‐rate distribution and to provide a documented baseline database. The measurements show that all sites (with the exception of the Gösgen power plant) can be identified clearly on the maps. No artificial radioactivity that could not be explained by the Chernobyl release or earlier nuclear weapons tests was detected outside of the fenced sites of the nuclear installations. The second program aims at a better evaluation of the natural radiation level in Switzerland. The survey focused on the crystalline rocks of the Central Massifs of the Swiss Alps because of their relatively high natural radioactivity and lithological variability.


1965 ◽  
Vol 70 (17) ◽  
pp. 4227-4234 ◽  
Author(s):  
C. E. Fichtel ◽  
D. A. Kniffen
Keyword(s):  

1989 ◽  
Vol 16 (6) ◽  
pp. 851-857 ◽  
Author(s):  
D. A. Bradley ◽  
D. R. Dance ◽  
S. H. Evans ◽  
C. H. Jones

1994 ◽  
Vol 93 (1) ◽  
pp. 1491-1496 ◽  
Author(s):  
G. Schupp ◽  
W. B. Yelon ◽  
J. G. Mullen ◽  
R. Wagoner
Keyword(s):  

1979 ◽  
Vol 166 (1) ◽  
pp. 39-43 ◽  
Author(s):  
W.B. Yelon ◽  
R.W. Alkire ◽  
G. Schupp

Sign in / Sign up

Export Citation Format

Share Document