scholarly journals Modeling Gamma-Ray SEDs and Angular Extensions of Extreme TeV Blazars from Intergalactic Proton-Initiated Cascades in Contemporary Astrophysical EGMF Models

Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 220
Author(s):  
Emil Khalikov

The intrinsic spectra of some distant blazars known as “extreme TeV blazars” have shown a hint at an anomalous hardening in the TeV energy region. Several extragalactic propagation models have been proposed to explain this possible excess transparency of the Universe to gamma-rays starting from a model which assumes the existence of so-called axion-like particles (ALPs) and the new process of gamma-ALP oscillations. Alternative models suppose that some of the observable gamma-rays are produced in the intergalactic cascades. This work focuses on investigating the spectral and angular features of one of the cascade models, the Intergalactic Hadronic Cascade Model (IHCM) in the contemporary astrophysical models of Extragalactic Magnetic Field (EGMF). For IHCM, EGMF largely determines the deflection of primary cosmic rays and electrons of intergalactic cascades and, thus, is of vital importance. Contemporary Hackstein models are considered in this paper and compared to the model of Dolag. The models assumed are based on simulations of the local part of large-scale structure of the Universe and differ in the assumptions for the seed field. This work provides spectral energy distributions (SEDs) and angular extensions of two extreme TeV blazars, 1ES 0229+200 and 1ES 0414+009. It is demonstrated that observable SEDs inside a typical point spread function of imaging atmospheric Cherenkov telescopes (IACTs) for IHCM would exhibit a characteristic high-energy attenuation compared to the ones obtained in hadronic models that do not consider EGMF, which makes it possible to distinguish among these models. At the same time, the spectra for IHCM models would have longer high energy tails than some available spectra for the ALP models and the universal spectra for the Electromagnetic Cascade Model (ECM). The analysis of the IHCM observable angular extensions shows that the sources would likely be identified by most IACTs not as point sources but rather as extended ones. These spectra could later be compared with future observation data of such instruments as Cherenkov Telescope Array (CTA) and LHAASO.

2018 ◽  
Vol 612 ◽  
pp. A1 ◽  
Author(s):  
◽  
H. Abdalla ◽  
A. Abramowski ◽  
F. Aharonian ◽  
F. Ait Benkhali ◽  
...  

We present the results of the most comprehensive survey of the Galactic plane in very high-energy (VHE) γ-rays, including a public release of Galactic sky maps, a catalog of VHE sources, and the discovery of 16 new sources of VHE γ-rays. The High Energy Spectroscopic System (H.E.S.S.) Galactic plane survey (HGPS) was a decade-long observation program carried out by the H.E.S.S. I array of Cherenkov telescopes in Namibia from 2004 to 2013. The observations amount to nearly 2700 h of quality-selected data, covering the Galactic plane at longitudes from ℓ = 250° to 65° and latitudes |b|≤ 3°. In addition to the unprecedented spatial coverage, the HGPS also features a relatively high angular resolution (0.08° ≈ 5 arcmin mean point spread function 68% containment radius), sensitivity (≲1.5% Crab flux for point-like sources), and energy range (0.2–100 TeV). We constructed a catalog of VHE γ-ray sources from the HGPS data set with a systematic procedure for both source detection and characterization of morphology and spectrum. We present this likelihood-based method in detail, including the introduction of a model component to account for unresolved, large-scale emission along the Galactic plane. In total, the resulting HGPS catalog contains 78 VHE sources, of which 14 are not reanalyzed here, for example, due to their complex morphology, namely shell-like sources and the Galactic center region. Where possible, we provide a firm identification of the VHE source or plausible associations with sources in other astronomical catalogs. We also studied the characteristics of the VHE sources with source parameter distributions. 16 new sources were previously unknown or unpublished, and we individually discuss their identifications or possible associations. We firmly identified 31 sources as pulsar wind nebulae (PWNe), supernova remnants (SNRs), composite SNRs, or gamma-ray binaries. Among the 47 sources not yet identified, most of them (36) have possible associations with cataloged objects, notably PWNe and energetic pulsars that could power VHE PWNe.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shigeo S. Kimura ◽  
Kohta Murase ◽  
Péter Mészáros

AbstractThe Universe is filled with a diffuse background of MeV gamma-rays and PeV neutrinos, whose origins are unknown. Here, we propose a scenario that can account for both backgrounds simultaneously. Low-luminosity active galactic nuclei have hot accretion flows where thermal electrons naturally emit soft gamma rays via Comptonization of their synchrotron photons. Protons there can be accelerated via turbulence or reconnection, producing high-energy neutrinos via hadronic interactions. We demonstrate that our model can reproduce the gamma-ray and neutrino data. Combined with a contribution by hot coronae in luminous active galactic nuclei, these accretion flows can explain the keV – MeV photon and TeV – PeV neutrino backgrounds. This scenario can account for the MeV background without non-thermal electrons, suggesting a higher transition energy from the thermal to nonthermal Universe than expected. Our model is consistent with X-ray data of nearby objects, and testable by future MeV gamma-ray and high-energy neutrino detectors.


2010 ◽  
Vol 27 (4) ◽  
pp. 431-438 ◽  
Author(s):  
H. Steinle

AbstractCen A, at a distance of less than 4 Mpc, is the nearest radio-loud AGN. Its emission is detected from radio to very-high energy gamma-rays. Despite the fact that Cen A is one of the best studied extragalactic objects the origin of its hard X-ray and soft gamma-ray emission (100 keV <E< 50 MeV) is still uncertain. Observations with high spatial resolution in the adjacent soft X-ray and hard gamma-ray regimes suggest that several distinct components such as a Seyfert-like nucleus, relativistic jets, and even luminous X-ray binaries within Cen A may contribute to the total emission in the MeV regime that has been detected with low spatial resolution. As the Spectral Energy Distribution of Cen A has its second maximum around 1 MeV, this energy range plays an important role in modeling the emission of (this) AGN. As there will be no satellite mission in the near future that will cover this energies with higher spatial resolution and better sensitivity, an overview of all existing hard X-ray and soft gamma-ray measurements of Cen A is presented here defining the present knowledge on Cen A in the MeV energy range.


2016 ◽  
Vol 12 (S324) ◽  
pp. 70-73
Author(s):  
Alessio Berti ◽  

AbstractGamma-Ray Bursts (GRBs) are the most violent explosions in the Universe, releasing a huge amount of energy in few seconds. While our understanding of the prompt and the afterglow phases has increased with Swift and Fermi, we have very few information about their High Energy (HE, E ≲ 100) emission components. This requires a ground-based experiment able to perform fast follow-up with enough sensitivity above ~ 50 GeV. The MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) telescopes have been designed to perform fast follow-up on GRBs thanks to fast slewing movement and low energy threshold (~ 50 GeV). Since the beginning of the operations, MAGIC followed-up 89 GRBs in good observational conditions. In this contribution the MAGIC GRBs follow-up campaign and the results which could be obtained by detecting HE and Very High Energy (VHE, E ≳ 100 GeV) γ-rays from GRBs will be reviewed.


1995 ◽  
Vol 48 (2) ◽  
pp. 305 ◽  
Author(s):  
T Kifune

Very-high-energy (VHE) gamma rays, with energies .<: 1 TeV = 1012 eV, are observed with ground-based telescopes using the atmospheric Cerenkov technique. This field of astronomy has recently experienced its coming of age, opening a new observational window on the universe after efforts spanning almost 30 years. Recent advances in this field have been aided by the results from satellite detectors with high-energy (HE) gamma ray 'eyes'. Satellite detectors are sensitive to HE gamma rays, up to energies of about 10 GeV = 1010 eV. In this paper, VHE gamma ray astronomy is reviewed, and the 3�8 m diameter telescope of the Japanese-Australian CANGAROO project is used to illustrate the detection techniques. As VHE gamma ray astronomy is closely related to observations in the HE region, results from recent satellite experiments are also discussed.


2019 ◽  
Vol 208 ◽  
pp. 14003
Author(s):  
Hiroki Rokujo

Observation of cosmic gamma rays is important in the understanding of high-energy objects or phenomena in the universe. Since 2008, the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope (Fermi-LAT) has surveyed the sub-GeV/GeV gamma-ray sky and achieved high statistics measurements. However, observation at low galactic latitudes remains difficult owing to the lack of angular resolution, and new issues following the operation of Fermi-LAT have arisen. We devised a precise gamma-ray observation project, Gamma-Ray Astro-Imager with Nuclear Emulsion (GRAINE), using balloon-borne emulsion gammaray telescopes to realize high angular resolution, polarization-sensitive, and large-aperture observations in the 10 MeV–100 GeV energy region. Following basic developments on the ground, we performed three balloon-borne experiments with upgraded instruments. In this paper, we present results from the second balloon experiment in 2015, a report on the latest balloon experiment conducted on April 26, 2018, and a recent study on hadronic interactions using proton beams.


2014 ◽  
Vol 10 (S313) ◽  
pp. 169-174
Author(s):  
Antonio Marinelli ◽  
Nissim Fraija

AbstractFanaroff-Riley I radiogalaxies have been observed in TeV gamma-rays during the last decades. The origin of the emission processes related with this energy band is still under debate. Here we consider the case of the two closest Fanaroff-Riley I objects: Centaurus A and M87. Their entire broadband spectral energy distributions and variability fluxes show evidences that leptonic models are not sufficient to explain their fluxes above 100 GeV. Indeed, both objects have been imaged by LAT instrument aboard of Fermi telescope with measured spectra well connected with one-zone leptonic models. However, to explain the TeV spectra obtained with campaigns by H.E.S.S., for Centaurus A, and by VERITAS, MAGIC and H.E.S.S. for M87, different emission processes must be introduced. In this work we introduce hadronic scenarios to describe the TeV gamma-ray fluxes observed and to obtain the expected neutrino counterparts for each considered TeV campaign. With the obtained neutrino spectra we calculate, through Monte Carlo simulations, the expected neutrino event rate in a hypothetical Km3 neutrino telescope and we compare the results with what has been observed by IceCube experiment up to now.


1968 ◽  
Vol 46 (10) ◽  
pp. S425-S426 ◽  
Author(s):  
J. P. Delvaille ◽  
P. Albats ◽  
K. I. Greisen ◽  
H. B. Ögelman

A balloon-borne photographic spark chamber was flown at a pressure of 10 g cm−2 on 14 April 1966 from Holloman A.F.B., New Mexico. Upper limits were obtained on gamma-ray fluxes above 1 GeV from various discrete sources including Cyg A, Cas A, and the Crab nebula. Also a measurement was made on the average photon flux above 1 GeV from a portion of the galactic disk.


2020 ◽  
Vol 637 ◽  
pp. A86
Author(s):  
◽  
V. A. Acciari ◽  
S. Ansoldi ◽  
L. A. Antonelli ◽  
A. Babić ◽  
...  

Context. Markarian 501 (Mrk 501) is a very high-energy (VHE) gamma-ray blazar located at z = 0.034, which is regularly monitored by a wide range of multi-wavelength instruments, from radio to VHE gamma rays. During a period of almost two weeks in July 2014, the highest X-ray activity of Mrk 501 was observed in ∼14 years of operation of the Neil Gehrels Swift Gamma-ray Burst Observatory. Aims. We characterize the broadband variability of Mrk 501 from radio to VHE gamma rays during the most extreme X-ray activity measured in the last 14 years, and evaluate whether it can be interpreted within theoretical scenarios widely used to explain the broadband emission from blazars. Methods. The emission of Mrk 501 was measured at radio with Metsähovi, at optical–UV with KVA and Swift/UVOT, at X-ray with Swift/XRT and Swift/BAT, at gamma ray with Fermi-LAT, and at VHE gamma rays with the FACT and MAGIC telescopes. The multi-band variability and correlations were quantified, and the broadband spectral energy distributions (SEDs) were compared with predictions from theoretical models. Results. The VHE emission of Mrk 501 was found to be elevated during the X-ray outburst, with a gamma-ray flux above 0.15 TeV varying from ∼0.5 to ∼2 times the Crab nebula flux. The X-ray and VHE emission both varied on timescales of 1 day and were found to be correlated. We measured a general increase in the fractional variability with energy, with the VHE variability being twice as large as the X-ray variability. The temporal evolution of the most prominent and variable segments of the SED, characterized on a day-by-day basis from 2014 July 16 to 2014 July 31, is described with a one-zone synchrotron self-Compton model with variations in the break energy of the electron energy distribution (EED), and with some adjustments in the magnetic field strength and spectral shape of the EED. These results suggest that the main flux variations during this extreme X-ray outburst are produced by the acceleration and the cooling of the high-energy electrons. A narrow feature at ∼3 TeV was observed in the VHE spectrum measured on 2014 July 19 (MJD 56857.98), which is the day with the highest X-ray flux (>0.3 keV) measured during the entire Swift mission. This feature is inconsistent with the classical analytic functions to describe the measured VHE spectra (power law, log-parabola, and log-parabola with exponential cutoff) at more than 3σ. A fit with a log-parabola plus a narrow component is preferred over the fit with a single log-parabola at more than 4σ, and a dedicated Monte Carlo simulation estimated the significance of this extra component to be larger than 3σ. Under the assumption that this VHE spectral feature is real, we show that it can be reproduced with three distinct theoretical scenarios: (a) a pileup in the EED due to stochastic acceleration; (b) a structured jet with two-SSC emitting regions, with one region dominated by an extremely narrow EED; and (c) an emission from an IC pair cascade induced by electrons accelerated in a magnetospheric vacuum gap, in addition to the SSC emission from a more conventional region along the jet of Mrk 501.


2019 ◽  
Vol 491 (2) ◽  
pp. 2771-2778 ◽  
Author(s):  
L Costamante

ABSTRACT BL Lac objects can be extreme in two ways: with their synchrotron emission, peaking beyond 1 keV in their spectral energy distribution, or with their gamma-ray emission, peaking at multi-TeV energies up to and beyond 10–20 TeV, like 1ES 0229+200. This second type of extreme BL Lacs – which we can name TeV-peaked BL Lacs – is not well explained by the usual synchrotron self-Compton scenarios for BL Lacs. These sources are also important as probes for the intergalactic diffuse infrared background and cosmic magnetic fields, as well as possible sites of production of ultra-high-energy cosmic rays and neutrinos. However, all these studies are hindered by their still very limited number. Here I propose a new, simple criterium to select the best candidates for TeV observations, specifically aimed at this peculiar type of BL Lac objects by combining X-ray, gamma-ray, and infrared data. It is based on the observation of a clustering towards a high X-ray to GeV gamma-ray flux ratio, and it does not rely on the radio flux or X-ray spectrum. This makes it suitable to find TeV-peaked sources also with very faint radio emission. Taking advantage of the Fermi all-sky gamma-ray survey applied to the ROMA-BZCAT and Sedentary Survey samples, I produce an initial list of 47 TeV-peaked candidates for observations with present and future air-Cherenkov telescopes.


Sign in / Sign up

Export Citation Format

Share Document