Experimental and Numerical Studies on Performance of Passive Decay Heat Removal by a Water Cooling Panel from a High-Temperature Gas-Cooled Reactor

1999 ◽  
Vol 36 (5) ◽  
pp. 413-423
Author(s):  
Shoji TAKADA ◽  
Kunihiko SUZUKI ◽  
Yoshiyuki INAGAKI ◽  
Yukio SUDO
2013 ◽  
Vol 794 ◽  
pp. 507-513
Author(s):  
R.G. Rangasamy ◽  
Prabhat Kumar

Austenitic stainless steels are the major material of construction for the fast breeder reactors in view of their adequate high temperature mechanical properties, compatibility with liquid sodium coolant, good weldability, availability of design data and above all the fairly vast and satisfactory experience in the use of these steels for high temperature service. All the Nuclear Steam Supply System (NSSS) components of FBR are thin walled structure and require manufacture to very close tolerances under nuclear clean conditions. As a result of high temperature operation and thin wall construction, the acceptance criteria are stringent as compared to ASME Section III. The material of construction is Austenitic stainless steel 316 LN and 304 LN with controlled Chemistry and calls for additional tests and requirements as compared to ASTM standards. Prototype Fast Breeder Reactor (PFBR) is sodium cooled, pool type, 500 MWe reactor which is at advanced stage of construction at Kalpakkam, Tamilnadu, India. In PFBR, the normal heat transport is mainly through two secondary loops and in their absence; the decay heat removal is through four passive and independent safety grade decay heat removal loops (SGDHR). The secondary sodium circuit and the SGHDR circuit consist of sodium tanks for various applications such as storage, transfer, pressure mitigation and to take care of volumetric expansion. The sodium tanks are thin walled cylindrical vertical vessels with predominantly torispherical dished heads at the top and bottom. These tanks are provided with pull-out nozzles which were successfully made by cold forming. Surface thermocouples and heaters, wire type leak detectors are provided on these tanks. These tanks are insulated with bonded mineral wool and with aluminum cladding. All the butt welds in pressure parts were subjected to 100% Radiographic examination. These tanks were subjected to hydrotest, pneumatic test and helium leak test under vacuum. The principal material of construction being stainless steel for the sodium tanks shall be handled with care following best engineering practices coupled with stringent QA requirements to avoid stress corrosion cracking in the highly brackish environment. Intergranular stress corrosion cracking and hot cracking are additional factors to be addressed for the welding of stainless steel components. Pickling and passivation, Testing with chemistry controlled demineralised water are salient steps in manufacturing. Corrosion protection and preservation during fabrication, erection and post erection is a mandatory stipulation in the QA programme. Enhanced reliability of welded components can be achieved mainly through quality control and quality assurance procedures in addition to design and metallurgy. The diverse and redundant inspections in terms of both operator and technique are required for components where zero failure is desired & claimed. This paper highlights the step by step quality management methodologies adopted during the manufacturing of high temperature thin walled austenitic stainless steel sodium tanks of PFBR.


Author(s):  
Junya Nakata ◽  
Mikihiro Wakui ◽  
Michitsugu Mori ◽  
Hiroto Sakashita ◽  
Charles Forsberg

The Fluoride-salt-cooled High-temperature Reactor (FHR) is a new concept of nuclear power reactor being investigated mainly in U.S. and China. The coolant is a liquid salt with a melting point of about 460°C and a boiling point of over 1400°C. As the baseline decay heat removal system, a passive Direct Reactor Air Cooling System (DRACS) is utilized. Though DRACS system has been developed in Sodium Fast reactors (SFR), there are some differences between both. For example, the system in FHR must decrease heat removal when temperatures are low to avoid freezing of the salt and blocking the flow of liquid. Therefore, considering its characteristics, a numerical investigation of DRACS system is needed to evaluate whether FHR has proper ability to remove decay heat and to be robust for a long-time cooling operation after even a severe accident. Furthermore, in addition to its performance evaluation, it is required to make up the operation plan of FHR considering features of this system. It is highly important, with the view of avoiding severe accident, to determine by when the system should be started up. In both countries mentioned above, Fluoride-salt-cooled High-temperature Test Reactor (FHTR) is currently in progress to build. Reviewing its design and system is a crucial step needed to develop the FHR technology. In this research, a performance of DRACS system under some thermal-hydraulic basic events was evaluated by numerical simulation. This paper also suggested the adequate operation procedure suitable for FHTR to avoid a severe accident.


1978 ◽  
Vol 100 (4) ◽  
pp. 586-591 ◽  
Author(s):  
M. A. El-Masri ◽  
J. F. Louis

Centrifugal and Coriolis accelerations have a strong impact on the fluid dynamics and heat transfer in the various schemes of water cooling being actively considered for rotating blades in very high temperature gas turbines. Analytical studies of a thin water film in a rotating rectangular channel open to ambient pressure are presented. First, the dynamics of a thin rotating film indicate that for a certain flow rate it thins out into a stable film under the action of the Coriolis force only for a flow depth below a critical thickness. The value of the critical thickness is a function of the tilt angle between the axis of the cooling passage and the radial. Criteria for nucleation and burnout in high speed liquid films are proposed. These criteria are used to estimate the coolant requirements for representative heat fluxes at different ambient pressures. They suggest that coolant demand increases drastically with pressure. The maximum coolant demand at a fixed heat flux would occur in the neighborhood of five bars.


Sign in / Sign up

Export Citation Format

Share Document