scholarly journals Creep behaviour of structured clays in triaxial stress space: theory and experimental investigation

Author(s):  
Truong Le ◽  
David Airey ◽  
Jamie Standing
2019 ◽  
Vol 92 ◽  
pp. 05006
Author(s):  
Truong Le ◽  
David Airey ◽  
Jamie Standing

The evolution of the creep strain component in triaxial stress space was investigated through performing a series of multistage drained compression tests on London Clay using a specially designed locally instrumented triaxial apparatus. Experiments along specifically defined stress paths showed significant rotation of the local creep strain component as the samples were sheared towards failure. The results indicate a need for a more complex plastic potential function to correctly predict incremental creep strains at different states in triaxial stress space. Creep deformations for stress path controlled drained compression tests were also found to require a reinterpretation of the classic secondary compression behaviour. Creep strain-rates were found to fall well outside the normal power decay function. Test data and previously reported drained creep test results on London Clay have been combined to provide a complete understanding of the incremental creep component. The experiments show how creep behaviour significantly depends on the stress conditions imposed and the approaching strain rate.


1998 ◽  
Vol 35 (6) ◽  
pp. 1053-1062 ◽  
Author(s):  
Y P Vaid ◽  
A Eliadorani

An experimental investigation of the initiation of instability (liquefaction) in saturated sand under partially drained conditions is presented. The domain of stress space in which this instability develops is identified under various degrees of drainage, and its relationship to the zone of instability observed under undrained shear is explored. It is shown that partially drained conditions may render sand unstable that would otherwise be stable in a completely undrained state. Extremely small void ratio increases that cannot be regarded as physical loosening of sand, if sand is partially drained, contribute to instability. Implications of the findings are discussed in practical problems of liquefaction.Key words: sand, liquefaction, undrained, partially drained, instability, triaxial test.


Sign in / Sign up

Export Citation Format

Share Document