Effect of gas pressure and clamping pressure on interfacial contact resistance of a cylindrical polymer electrolyte membrane fuel cell

Author(s):  
Amit C. Bhosale ◽  
S. R. Suseendiran ◽  
Kiran Rokhade ◽  
Raghunathan Rengaswamy
2017 ◽  
Vol 20 (4) ◽  
pp. 169-173
Author(s):  
Huihui Zhang ◽  
Juntao Yuan ◽  
Ming Zhu

In order to reduce interfacial contact resistance (ICR) and enhance corrosion resistance of 310 stainless steel (310 SS) for bipolar plates (BPs) of polymer electrolyte membrane fuel cell (PEMFC), TiN with styrene-butadiene rubber (SBR) coating was prepared by using electrophoretic deposition. Microstructure of TiN-SBR coated 310 SS prepared under different conditions was characterized by scanning electron microscopy (SEM), and a uniform, dense and well-bonded TiN-SBR coating was prepared at 30 V for 10 s in the suspension liquid containing 6.0 g/L SBR. Polarization behavior in the simulated service environment of PEMFC (1 M H2SO4 at 298 K) and ICR of the TiN-SBR coating deposited under the optimized conditions were investigated. The results showed that the TiN-SBR coating successfully decreased the anodic polarization current and ICR, indicating excellent interfacial contact resistance and corrosion resistance.


Author(s):  
Heli Wang ◽  
Glenn Teeter ◽  
John A. Turner

An austenite 349 stainless steel was nitrided via nitrogen plasma. Glancing angle X-ray diffraction patterns suggest that the nitrided layer is amorphous. X-ray photoelectron spectroscopy analysis indicated that the plasma nitridation process produced bulk-type nitrides in the surface layer. In general, the nitrided layer was composed of iron oxide in the outer layer and chromium oxide in the inner layers. Contaminations of vanadium and tin were detected in the as-grown nitrided layer; these dissolved away after polarization. The influence of these contaminants on the corrosion resistance of the nitrided layer in polymer electrolyte membrane fuel cell (PEMFC) environments is not considered significant. The nitrided sample had a much higher contact resistance than the bare one and the contact resistance increased with the nitriding time. The high interfacial contact resistance values can be related to the thicker oxide film after plasma nitridation. The corrosion resistances obtained for the 1 h nitrided and bare stainless steels in simulated PEMFC environments were similar. The outmost nitrided layer dissolved after polarization in the PEMFC environments leaving a passive film (modified with nitrides), similar to that of bare stainless steel under the same conditions. The passive film thickness was 3.7 nm for nitrided steel in PEMFC cathode environment and 4.2 nm for nitrided steel in PEMFC anode environment.


Sign in / Sign up

Export Citation Format

Share Document