scholarly journals When monoclonal antibodies are not monospecific: Hybridomas frequently express additional functional variable regions

mAbs ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 539-546 ◽  
Author(s):  
Andrew R. M. Bradbury ◽  
Nathan D. Trinklein ◽  
Holger Thie ◽  
Ian C. Wilkinson ◽  
Atul K. Tandon ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Patamalai Boonserm ◽  
Songchan Puthong ◽  
Thanaporn Wichai ◽  
Sajee Noitang ◽  
Pongsak Khunrae ◽  
...  

AbstractIt is important to understand the amino acid residues that govern the properties of the binding between antibodies and ligands. We studied the binding of two anti-norfloxacins, anti-nor 132 and anti-nor 155, and the fluoroquinolones norfloxacin, enrofloxacin, ciprofloxacin, and ofloxacin. Binding cross-reactivities tested by an indirect competitive enzyme-linked immunosorbent assay indicated that anti-nor 132 (22–100%) had a broader range of cross-reactivity than anti-nor 155 (62–100%). These cross-reactivities correlated with variations in the numbers of interacting amino acid residues and their positions. Molecular docking was employed to investigate the molecular interactions between the fluoroquinolones and the monoclonal antibodies. Homology models of the heavy chain and light chain variable regions of each mAb 3D structure were docked with the fluoroquinolones targeting the crucial part of the complementarity-determining regions. The fluoroquinolone binding site of anti-nor 155 was a region of the HCDR3 and LCDR3 loops in which hydrogen bonds were formed with TYR (H:35), ASN (H:101), LYS (H:106), ASN (L:92), and ASN (L:93). These regions were further away in anti-nor 132 and could not contact the fluoroquinolones. Another binding region consisting of HIS (L:38) and ASP (H:100) was found for norfloxacin, enrofloxacin, and ciprofloxacin, whereas only ASP (H:100) was found for ofloxacin.


2019 ◽  
Vol 87 (9) ◽  
Author(s):  
Ermioni Kalfopoulou ◽  
Diana Laverde ◽  
Karmela Miklic ◽  
Felipe Romero-Saavedra ◽  
Suzana Malic ◽  
...  

ABSTRACTMultidrug-resistant enterococci are major causes of hospital-acquired infections. Immunotherapy with monoclonal antibodies (MAbs) targeting bacterial antigens would be a valuable treatment option in this setting. Here, we describe the development of two MAbs through hybridoma technology that target antigens from the most clinically relevant enterococcal species. Diheteroglycan (DHG), a well-characterized capsular polysaccharide ofEnterococcus faecalis, and the secreted antigen A (SagA), an immunogenic protein fromEnterococcus faecium, are both immunogens that have been proven to raise opsonic and cross-reactive antibodies against enterococcal strains. For this purpose, a conjugated form of the native DHG with SagA was used to raise the antibodies in mice, while enzyme-linked immunosorbent assay and opsonophagocytic assay were combined in the selection process of hybridoma cells producing immunoreactive and opsonic antibodies targeting the selected antigens. From this process, two highly specific IgG1(κ) MAbs were obtained, one against the polysaccharide (DHG.01) and one against the protein (SagA.01). Both MAbs exhibited good opsonic killing against the target bacterial strains: DHG.01 showed 90% killing againstE. faecalistype 2, and SagA.01 showed 40% killing againstE. faecium11231/6. In addition, both MAbs showed cross-reactivity toward otherE. faecalisandE. faeciumstrains. The sequences from the variable regions of the heavy and light chains were reconstructed in expression vectors, and the activity of the MAbs upon expression in eukaryotic cells was confirmed with the same immunological assays. In summary, we identified two opsonic MAbs against enterococci which could be used for therapeutic or prophylactic approaches against enterococcal infections.


1991 ◽  
Vol 69 (4) ◽  
pp. 297-302 ◽  
Author(s):  
Teresa Steeves ◽  
M. Michele Barry ◽  
Harry W. Duckworth ◽  
E. Bruce Waygood ◽  
Jeremy S. Lee

The variable regions of three monoclonal antibodies, Jel 42, Jel 44, and Jel 324, specific for the histidine-containing protein of the bacterial phosphoenolpyruvate:sugar phosphotransferase system have been sequenced from their respective mRNAs. The Vh gene families were deduced from the percent homology to the concensus gene sequences and the J gene and D gene usage was also analysed.Key words: monoclonal antibodies, gene sequencing.


2010 ◽  
Vol 396 (5) ◽  
pp. 1474-1490 ◽  
Author(s):  
Matthew J. Bernett ◽  
Sher Karki ◽  
Gregory L. Moore ◽  
Irene W.L. Leung ◽  
Hsing Chen ◽  
...  

1995 ◽  
Vol 756 (1 T-Cell Recept) ◽  
pp. 106-109 ◽  
Author(s):  
A. NECKER ◽  
H. MICHALAKI ◽  
M. C. RAYNAL ◽  
C. ROCHER ◽  
A. DIU ◽  
...  

2011 ◽  
Vol 55 (4) ◽  
pp. 1349-1357 ◽  
Author(s):  
Qingbing Zheng ◽  
Lin Xia ◽  
Wai Lan Wu ◽  
Zhenhua Zheng ◽  
Yongting Huo ◽  
...  

ABSTRACTHighly pathogenic H5N1 virus infection causes severe disease and a high rate of fatality in humans. Development of humanized monoclonal antibodies may provide an efficient therapeutic regime for H5N1 virus infection. In the present study, broadly cross-reactive monoclonal antibodies (MAbs) derived from mice were humanized to minimize immunogenicity. One chimeric antibody (cAb) and seven humanized antibodies (hAbs) were constructed. These antibodies retained broad-spectrum reactivity to H5N1 viruses, binding to recombinant H5-subtype HA1 molecules expressed in CHO cells in a dose-dependent manner and exhibiting similar reactivities against antigenically distinct H5N1 viruses in hemagglutination inhibition (HI) assays. One humanized antibody, 37 hAb, showed HI and neutralization activities comparable to that of the parental murine antibody, 13D4 MAb, while the other six antibodies were less reactive to H5N1 viruses. Analysis of amino acid sequences in the variable region frameworks of the seven humanized antibodies found that Q5 and Y27 in the VH region are highly conserved murine residues. Comparison of the three-dimensional structures derived from the variable regions of MAbs 37 hAb, H1202-34, and 13D4 revealed that residue substitutions at sites 70 and 46 may be the major cause for the observed differences in binding affinity. Examination of the chimeric antibody and one of the humanized antibodies, 37 hAb, showed that both antibodies offered postinfection protection against lethal challenge with antigenically diverse H5N1 viruses in the mouse model. Chimeric and humanized antibodies which retain the broadly reactive and protective properties of murine H5-specific monoclonal antibodies have great potential for use in the treatment of human H5N1 infection.


2000 ◽  
Vol 7 (3) ◽  
pp. 390-395 ◽  
Author(s):  
J. Jelfs ◽  
R. Munro ◽  
E. Wedege ◽  
D. A. Caugant

ABSTRACT The ET-15 clone within the electrophoretic type (ET)-37 complex ofNeisseria meningitidis was first detected in Canada in 1986 and has since been associated with outbreaks of meningococcal disease in many parts of the world. While the majority of the strains of the ET-37 complex are serosubtype P1.5,2, serosubtype determination of ET-15 strains may often be incomplete, with either only one or none of the two variable regions (VRs) of the serosubtype PorA outer membrane protein reacting with monoclonal antibodies. DNA sequence analysis of the porA gene from ET-15 strains with one or both unidentified serosubtype determinants was undertaken to identify the genetic basis of the lack of reaction with the monoclonal antibodies. Fourteen different porA alleles were identified among 38 ET-15 strains from various geographic origins. The sequences corresponding to subtypes P1.5a,10d, P1.5,2, P1.5,10d, P1.5a,10k, and P1.5a,10a were identified in 18, 11, 2, 2, and 1 isolate, respectively. Of the remaining four strains, which all were nonserosubtypeable, two had a stop codon within the VR1 and the VR2, respectively, while in the other two the porA gene was interrupted by the insertion element, IS1301. Of the strains with P1.5,2 sequence, one had a stop codon between the VR1 and VR2, one had a four-amino-acid deletion outside the VR2, and another showed no expression of PorA on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Our results reveal that numerous genetic events have occurred in theporA gene of the ET-15 clone in the short time of its epidemic spread. The magnitude of microevolutionary mechanisms available in meningococci and the remarkable genetic flexibility of these bacteria need to be considered in relation to PorA vaccine development.


Sign in / Sign up

Export Citation Format

Share Document