scholarly journals Evaluation of the migration of chemicals from baby bottles under standardised and duration testing conditions

2016 ◽  
Vol 33 (5) ◽  
pp. 893-904 ◽  
Author(s):  
Matthias Onghena ◽  
Els Van Hoeck ◽  
Noelia Negreira ◽  
Laurent Quirynen ◽  
Joris Van Loco ◽  
...  
TAPPI Journal ◽  
2013 ◽  
Vol 12 (11) ◽  
pp. 21-26 ◽  
Author(s):  
CHAO TIAN ◽  
LINQIANG ZHENG ◽  
QINGXIAN MIAO ◽  
CHRIS NASH ◽  
CHUNYU CAO ◽  
...  

The Fock test is widely used for assessing the reactivity of dissolving pulp. The objective of this study was to modify the method to improve the repeatability of the test. Various parameters that affect the repeatability of the Fock test were investigated. The results showed that Fock reactivity is dependent on testing conditions affecting the xanthation between cellulose and carbon disulfide, such as the moisture content of the pulp sample, sodium hydroxide (NaOH) concentration, xanthation temperature, carbon disulfide dosage, and xanthation time. The repeatability of the test was significantly improved using the following modified testing procedure: air dried sample in the constant temperature/humidity room, xanthation temperature of 66°F (19°C) in a water bath, xanthation time of 3 h, NaOH concentration of 9% (w/w), and 1.3 mL carbon disulfide.


1986 ◽  
Vol 84 ◽  
Author(s):  
M.D. Merz ◽  
F. Gerber ◽  
R. Wang

AbstractThe Materials Characterization Center (MCC) at Pacific Northwest Lab- oratory is performing three kinds of corrosion tests for the Basalt Waste Isolation Project (BWIP) to establish the interlaboratory reproducibility and uncertainty of corrosion rates of container materials for high-level nuclear waste. The three types of corrosion tests were selected to address two distinct conditions that are expected in a repository constructed in basalt. An air/steam test is designed to address corrosion during the operational period and static pressure vessel and flowby tests are designed to address corrosion under conditions that bound the condi ring the post-closure period of the repository.The results of tests at reference testing conditions, which were defined to facilitate interlaboratory comparison of data, are presented. Data are reported for the BWIP/MCC-105.5 Air/Steam Test, BWIP/MCC-105.1 Static Pressure Vessel, and BWIP/MC-105.4 Flowby Test. In those cases where data are available from a second laboratory, a statistical analysis of interlaboratory results is reported and expected confidence intervals for mean corrosion rates are given. Other statistical treatment of data include analyses of the effects of vessel-to-vessel variations, test capsule variations for the flowby test, and oven-to-oven variations for air/steam tests.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 300
Author(s):  
Jung Ho Hwang ◽  
Sang Young Lee ◽  
Jungil Choi

Antimicrobial resistance has become a major problem in public health and clinical environments. Against this background, antibiotic susceptibility testing (AST) has become necessary to cure diseases in an appropriate and timely manner as it indicates the necessary concentration of antibiotics. Recently, microfluidic based rapid AST methods using microscopic analysis have been shown to reduce the time needed for the determination of the proper antibiotics. However, owing to the inoculum effect, the accurate measurement of the minimal inhibitory concentration (MIC) is difficult. We tested four standard bacteria: Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Enterococcus faecalis, against five different antibiotics: piperacillin, cefotaxime, amikacin, levofloxacin, and ampicillin. The results showed that overall, the microfluidic system has a similar inoculum effect compared to the conventional AST method. However, due to the different testing conditions and determination protocols of the growth of the microfluidic based rapid AST, a few results are not identical to the conventional methods using optical density. This result suggests that microfluidic based rapid AST methods require further research on the inoculum effect for practical use in hospitals and can then be used for effective antibiotic prescriptions.


Author(s):  
G Girish ◽  
V Anandakrishnan

In this work, an Al–Zn–Mg–Cu/TiC metal–matrix composite was fabricated through recursive friction stir processing, and its microstructure, hardness, and tribological properties were investigated. Microstructure examination revealed a homogeneous dispersion of TiC particles in the matrix after six recursive passes. The grains were significantly refined and microhardness of the composite improved due to the presence of TiC particles. Friction coefficient and wear rate of the composite went up with an increase in the applied load and dropped significantly at higher sliding velocities. The morphology of the wear specimens experimented under different testing conditions was analyzed and the corresponding wear mechanisms discussed.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2353
Author(s):  
Xiaochang Duan ◽  
Hongwei Yuan ◽  
Wei Tang ◽  
Jingjing He ◽  
Xuefei Guan

This study develops a unified phenomenological creep model for polymer-bonded composite materials, allowing for predicting the creep behavior in the three creep stages, namely the primary, the secondary, and the tertiary stages under sustained compressive stresses. Creep testing is performed using material specimens under several conditions with a temperature range of 20 °C–50 °C and a compressive stress range of 15 MPa–25 MPa. The testing data reveal that the strain rate–time response exhibits the transient, steady, and unstable stages under each of the testing conditions. A rational function-based creep rate equation is proposed to describe the full creep behavior under each of the testing conditions. By further correlating the resulting model parameters with temperature and stress and developing a Larson–Miller parameter-based rupture time prediction model, a unified phenomenological model is established. An independent validation dataset and third-party testing data are used to verify the effectiveness and accuracy of the proposed model. The performance of the proposed model is compared with that of an existing reference model. The verification and comparison results show that the model can describe all the three stages of the creep process, and the proposed model outperforms the reference model by yielding 28.5% smaller root mean squared errors on average.


Author(s):  
Mara Moreno-Gómez ◽  
Rubén Bueno-Marí ◽  
Andrea Drago ◽  
Miguel A Miranda

Abstract Vector-borne diseases are a worldwide threat to human health. Often, no vaccines or treatments exist. Thus, personal protection products play an essential role in limiting transmission. The World Health Organization (WHO) arm-in-cage (AIC) test is the most common method for evaluating the efficacy of topical repellents, but it remains unclear whether AIC testing conditions recreate the mosquito landing rates in the field. This study aimed to estimate the landing rate outdoors, in an area of Europe highly infested with the Asian tiger mosquito (Aedes albopictus (Skuse, 1894, Diptera: Culididae)), and to determine how to replicate this rate in the laboratory. To assess the landing rate in the field, 16 individuals were exposed to mosquitoes in a highly infested region of Italy. These field results were then compared to results obtained in the laboratory: 1) in a 30 m3 room where nine volunteers were exposed to different mosquito abundances (ranges: 15–20, 25–30, and 45–50) and 2) in a 0.064 m3 AIC test cage where 10 individuals exposed their arms to 200 mosquitoes (as per WHO requirements). The highest mosquito landing rate in the field was 26.8 landings/min. In the room test, a similar landing rate was achieved using 15–20 mosquitoes (density: 0.50–0.66 mosquitoes/m3) and an exposure time of 3 min. In the AIC test using 200 mosquitoes (density: 3,125 mosquitoes/m3), the landing rate was 229 ± 48 landings/min. This study provides useful reference values that can be employed to design new evaluation standards for topical repellents that better simulate field conditions.


2012 ◽  
Vol 486 ◽  
pp. 400-405 ◽  
Author(s):  
K. Tuchida ◽  
Kessaraporn Wathanyu ◽  
S. Surinphong

In this paper, the thermal oxidation behavior of TiAlCrSiN and AlCrTiN films coated on hastelloyX substrate, typically used for fuel nozzle in gas turbine engine application, have been studied. The thermal oxidation behavior at 950, 1050 and 1150 °C in controlled atmosphere were investigated. The surface appearance, microstructure, chemical composition and adhesion of films were investigated. The thermal oxidations were observed in all testing conditions showing oxide films at the surface with thicker oxide film at higher temperature. However, spalling of oxide scales was found in both coated and uncoated specimens at 1150°C suggesting the maximum working temperature of < 1150 °C for turbine engine applications. The critical loads corresponding to the full delamination of the thermal oxidation coated specimens were found to be higher than the non-thermal oxidation specimens. The effect of thermal oxidation on damage patterns during scratch tests, i.e. less chipping and cracking for thermal oxidation specimen, were also observed.


Sign in / Sign up

Export Citation Format

Share Document