Application of response surface methodology for electrochemical oxidation of the C.I. Reactive Orange 7 using flow reactor with Ti/Sb–SnO2anode

2015 ◽  
Vol 57 (42) ◽  
pp. 20027-20036
Author(s):  
Jalal Basiri Parsa ◽  
Mansoureh Bahiraei ◽  
Farideh Nabizadeh Chianeh
2014 ◽  
Vol 22 (8) ◽  
pp. 5831-5841 ◽  
Author(s):  
Jefferson E. Silveira ◽  
Juan A. Zazo ◽  
Gema Pliego ◽  
Edério D. Bidóia ◽  
Peterson B. Moraes

2020 ◽  
Vol 15 (3) ◽  
pp. 604-616
Author(s):  
Girish Basavaraju ◽  
Ravishankar Rajanna

A custom-made tubular flow reactor was utilized to develop a mathematical model and optimize the Suzuki-Miyaura cross coupling reaction. In this study, the experimentation was designed and executed through the statistical design of experiments (DoE) approach via response surface methodology. The effect of molar ratios of phenylboronic acid (1) and 4-bromophenol (2), temperature, the catalyst tetrakis(triphenylphosphine)palladium, and equivalence of aqueous tripotassium phosphate was studied in detail. The flow reactor profile was in good agreement with batch conditions and significant improvements to the overall reaction time and selectivity towards desired [1-1-biphenyl]-4-ol (3) was achieved. The Suzuki coupling reaction in batch condition would take on an average of 4 to 6 hours to complete, which was effectively accomplished in 60 to 70 minutes in this tubular reactor setup and could be operated continuously. The reaction model is in good agreement with the reaction conditions. Copyright © 2020 BCREC Group. All rights reserved 


Author(s):  
Mohammed Saleh ◽  
Rabia Yildirim ◽  
Zelal Isik ◽  
Ahmet Karagunduz ◽  
Bulent Keskinler ◽  
...  

Abstract In this study, electrochemical oxidation of combed fabric dyeing wastewater was investigated using graphite electrodes. The response surface methodology (RSM) was used to design the experiments via the central composite design (CCD). The planned experiments were done to track color changes and chemical oxygen demand (COD) removal. The experimental results were used to develop optimization models using RSM and the artificial neural network (ANN) and they were compared. The developed models by the two methods were in good agreement with the experimental results. The optimum conditions were found at 150 A/m2, pH 5, and 120 min. The removal efficiencies for color and COD reached 96.6% and 77.69%, respectively. The operating cost at the optimum conditions was also estimated. The energy and the cost of 1 m3 of wastewater required 34.9 kWh and 2.58 US$, respectively. The graphite electrodes can be successfully utilized for treatment of combed fabric dyeing wastewater with reasonable cost.


Sign in / Sign up

Export Citation Format

Share Document