Data fusion using aerial photographs and satellite images for detailed landslide assessment

2011 ◽  
Vol 2 (2) ◽  
pp. 181-190 ◽  
Author(s):  
Man Sing Wong ◽  
Janet Nichol ◽  
Ahmed Shaker ◽  
Chai Fun Hui
Sci ◽  
2020 ◽  
Vol 2 (1) ◽  
pp. 10
Author(s):  
Dimitris Kaimaris ◽  
Petros Patias ◽  
Giorgos Mallinis ◽  
Charalampos Georgiadis

Αbstract: To date, countless satellite image fusions have been made, mainly with panchromatic spatial resolution to a multispectral image ratio of 1/4, fewer fusions with lower ratios, and relatively recently fusions with much higher spatial resolution ratios have been published. Apart from this, there is a small number of publications studying the fusion of aerial photographs with satellite images, with the year of image acquisition varying and the dates of acquisition not mentioned. In addition, in these publications, either no quantitative controls are performed on the composite images produced, or the aerial photographs are recent and colorful and only the RGB bands of the satellite images are used for data fusion purposes. The objective of this paper is the study of the addition of multispectral information from satellite images to black and white aerial photographs of the 80s decade (1980–1990) with small difference (just a few days) in their image acquisition date, the same year and season. Quantitative tests are performed in two case studies and the results are encouraging, as the accuracy of the classification of the features and objects of the Earth’s surface is improved and the automatic digital extraction of their form and shape from the archived aerial photographs is now allowed. This opens up a new field of use for the black and white aerial photographs and archived multispectral satellite images of the same period in a variety of applications, such as the temporal changes of cities, forests and archaeological sites.


Sci ◽  
2019 ◽  
Vol 1 (2) ◽  
pp. 36
Author(s):  
Dimitris Kaimaris ◽  
Petros Patias ◽  
Giorgos Mallinis ◽  
Charalampos Georgiadis

To date, countless satellite image fusions have been made, mainly with panchromatic spatial resolution to a multispectral image ratio of 1/4, fewer fusions with lower ratios, and relatively recently fusions with much higher spatial resolution ratios have been published. Apart from this, there is a small number of publications studying the fusion of aerial photographs with satellite images, with the year of image acquisition varying and the dates of acquisition not mentioned. In addition, in these publications, either no quantitative controls are performed on the composite images produced, or the aerial photographs are recent and colorful and only the RGB bands of the satellite images are used for data fusion purposes. The objective of this paper is the study of the addition of multispectral information from satellite images to black and white aerial photographs of the 2nd half of the 20th century (1950–1999) with small difference (just a few days) in their image acquisition date, the same year and season. Quantitative tests are performed in two case studies and the results are encouraging, as the accuracy of the classification of the features and objects of the Earth’s surface is improved and the automatic digital extraction of their form and shape from the archived aerial photographs is now allowed. This opens up a new field of use for the black and white aerial photographs and archived multispectral satellite images of the same period in a variety of applications, such as the temporal changes of cities, forests and archaeological sites.


Sci ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 29
Author(s):  
Dimitris Kaimaris ◽  
Petros Patias ◽  
Giorgos Mallinis ◽  
Charalampos Georgiadis

To date, countless satellite image fusions have been made, mainly with panchromatic spatial resolution to a multispectral image ratio of 1/4, fewer fusions with lower ratios, and relatively recently fusions with much higher spatial resolution ratios have been published. Apart from this, there is a small number of publications studying the fusion of aerial photographs with satellite images, with the year of image acquisition varying and the dates of acquisition not mentioned. In addition, in these publications, either no quantitative controls are performed on the composite images produced, or the aerial photographs are recent and colorful and only the RGB bands of the satellite images are used for data fusion purposes. The objective of this paper is the study of the addition of multispectral information from satellite images to black and white aerial photographs of the 80s decade (1980–1990) with small difference (just a few days) in their image acquisition date, the same year and season. Quantitative tests are performed in two case studies and the results are encouraging, as the accuracy of the classification of the features and objects of the Earth’s surface is improved and the automatic digital extraction of their form and shape from the archived aerial photographs is now allowed. This opens up a new field of use for the black and white aerial photographs and archived multispectral satellite images of the same period in a variety of applications, such as the temporal changes of cities, forests and archaeological sites.


1996 ◽  
pp. 64-67 ◽  
Author(s):  
Nguen Nghia Thin ◽  
Nguen Ba Thu ◽  
Tran Van Thuy

The tropical seasonal rainy evergreen broad-leaved forest vegetation of the Cucphoung National Park has been classified and the distribution of plant communities has been shown on the map using the relations of vegetation to geology, geomorphology and pedology. The method of vegetation mapping includes: 1) the identifying of vegetation types in the remote-sensed materials (aerial photographs and satellite images); 2) field work to compile the interpretation keys and to characterize all the communities of a study area; 3) compilation of the final vegetation map using the combined information. In the classification presented a number of different level vegetation units have been identified: formation classes (3), formation sub-classes (3), formation groups (3), formations (4), subformations (10) and communities (19). Communities have been taken as mapping units. So in the vegetation map of the National Park 19 vegetation categories has been shown altogether, among them 13 are natural primary communities, and 6 are the secondary, anthropogenic ones. The secondary succession goes through 3 main stages: grassland herbaceous xerophytic vegetation, xerophytic scrub, dense forest.


Planet ◽  
2012 ◽  
Vol 26 (1) ◽  
pp. 31-35
Author(s):  
Dennis Edler ◽  
Nils Lammert-Siepmann ◽  
Carsten Jürgens

Sign in / Sign up

Export Citation Format

Share Document