Mental imagery in a visuospatial working memory task and modulation of activation

2011 ◽  
Vol 23 (1) ◽  
pp. 52-59 ◽  
Author(s):  
Felicia Fiore ◽  
Erika Borella ◽  
Irene C. Mammarella ◽  
Cesare Cornoldi
2011 ◽  
Vol 64 (11) ◽  
pp. 2168-2180 ◽  
Author(s):  
Joanna L. Brooks ◽  
Robert H. Logie ◽  
Robert McIntosh ◽  
Sergio Della Sala

Two experiments explored lateralized biases in mental representations of matrix patterns formed from aural verbal descriptions. Healthy participants listened, either monaurally or binaurally, to verbal descriptions of 6 by 3 matrix patterns and were asked to form a mental representation of each pattern. In Experiment 1, participants were asked to judge which half of the matrix, left or right, contained more filled cells and to rate the certainty of their judgement. Participants tended to judge that the left side was fuller than the right and showed significantly greater certainty when judging patterns that were fuller on the left. This tendency was particularly strong for left-ear presentation. In Experiment 2, participants conducted the same task as that in Experiment 1 but were also asked to recall the pattern for the side judged as fuller. Participants were again more certain in judging patterns that were fuller on the left—particularly for left-ear presentation—but were no more accurate in remembering the details from the left. These results suggest that the left side of the mental representation was represented more saliently but it was not remembered more accurately. We refer to this lateralized bias as “representational pseudoneglect”. Results are discussed in terms of theories of visuospatial working memory.


2018 ◽  
Author(s):  
Maria V. Soloveva ◽  
Sharna D. Jamadar ◽  
Dennis Velakoulis ◽  
Govinda Poudel ◽  
Nellie Georgiou Karistianis

AbstractPresymptomatic Huntington’s disease (pre-HD) individuals tend to increase functional brain activity to compensate for HD-related brain anomalies. We used a quantitative model of compensation, known as the CRUNCH (Compensation-Related Utilization of Neural Circuits Hypothesis) to explicitly characterise compensation in pre-HD. We acquired functionalmagnetic resonance imaging (fMRI) data (n = 15 pre-HD; n = 15 controls) during performance of an 18-minute fMRI visuospatial working memory task with low, intermediate-1, intermediate-2, and high memory loads. Consistent with the CRUNCH prediction, pre-HD individuals showed decreased fMRI activity in left intraparietal sulcus at high memory load, compared to healthy controls who showed increased fMRI activity in left intraparietal sulcus at high memory load. Contrary to the other CRUNCH prediction, the pre-HD group did not show compensatory increase in fMRI activity at lower levels of memory loads in left intraparietal sulcus. Our findings provide partial support for the validity of CRUNCH in pre-HD.HighlightsVisuospatial working memory deficits in pre-HD occur 25 years prior to predicted disease onsetTask demands differentially affect fMRI activity in left intraparietal sulcusCRUNCH can partially apply in Huntington’s disease


PLoS ONE ◽  
2018 ◽  
Vol 13 (8) ◽  
pp. e0201486 ◽  
Author(s):  
Joseph M. Baker ◽  
Jennifer L. Bruno ◽  
Andrew Gundran ◽  
S. M. Hadi Hosseini ◽  
Allan L. Reiss

2015 ◽  
Vol 27 (3) ◽  
pp. 453-463 ◽  
Author(s):  
Satoe Ichihara-Takeda ◽  
Shogo Yazawa ◽  
Takashi Murahara ◽  
Takanobu Toyoshima ◽  
Jun Shinozaki ◽  
...  

Oscillatory brain activity is known to play an essential role in information processing in working memory. Recent studies have indicated that alpha activity (8–13 Hz) in the parieto-occipital area is strongly modulated in working memory tasks. However, the function of alpha activity in working memory is open to several interpretations, such that alpha activity may be a direct neural correlate of information processing in working memory or may reflect disengagement from information processing in other brain areas. To examine the functional contribution of alpha activity to visuospatial working memory, we introduced visuospatial distractors during a delay period and examined neural activity from the whole brain using magnetoencephalography. The strength of event-related alpha activity was estimated using the temporal spectral evolution (TSE) method. The results were as follows: (1) an increase of alpha activity during the delay period as indicated by elevated TSE curves was observed in parieto-occipital sensors in both the working memory task and a control task that did not require working memory; and (2) an increase of alpha activity during the delay period was not observed when distractors were presented, although TSE curves were constructed only from correct trials. These results indicate that the increase of alpha activity is not directly related to information processing in working memory but rather reflects the disengagement of attention from the visuospatial input.


2015 ◽  
Vol 36 (9) ◽  
pp. 3387-3403 ◽  
Author(s):  
Wutao Lou ◽  
Lin Shi ◽  
Defeng Wang ◽  
Cindy W.C. Tam ◽  
Winnie C.W. Chu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document