scholarly journals Pathogenicity and virulence of Japanese encephalitis virus: Neuroinflammation and neuronal cell damage

Virulence ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 968-980
Author(s):  
Usama Ashraf ◽  
Zhen Ding ◽  
Shunzhou Deng ◽  
Jing Ye ◽  
Shengbo Cao ◽  
...  
2004 ◽  
Vol 85 (9) ◽  
pp. 2503-2513 ◽  
Author(s):  
Edward Gitau Matumbi Mathenge ◽  
Maria del Carmen Parquet ◽  
Yasutomo Funakoshi ◽  
Seiji Houhara ◽  
Pooi Fong Wong ◽  
...  

The first flavivirus chimera encoding dengue 4 virus (D4) PrM and E structural proteins in a Japanese encephalitis virus (JEV) backbone was successfully generated using the long-PCR based cDNA-fragment stitching (LPCRcFS) technique, demonstrating the technique's applicability for rapid preparation of flavivirus chimeras. The JEV/D4 chimera multiplied at levels equal to JEV and D4 in the mosquito cell line C6/36, while in a mouse neuronal cell line (N2a) JEV replicated efficiently, but JEV/D4 and D4 did not. In mouse challenge experiments, JEV/D4 showed a lack of neuroinvasiveness similar to D4 when inoculated intraperitoneally, but demonstrated attenuated neurovirulence (LD50=3·17×104 f.f.u.) when inoculated intracranially. It was also noted that mice receiving intraperitoneal challenge with JEV/D4 possessed D4-specific neutralization antibody and in addition clearly showed resistance to JEV intraperitoneal challenge (at 100×LD50). This suggests that immunity to anti-JEV non-structural protein(s) offers protection against JEV infection in vivo. Dengue secondary infection was also simulated by challenging mice pre-immunized with dengue 2 virus, with D4 or JEV/D4. Mice showed higher secondary antibody response to challenge with JEV/D4 than to D4, at 210 000 and 37 000 averaged ELISA units, respectively. Taken together, aside from demonstrating the LPCRcFS technique, it could be concluded that the PrM and E proteins are the major determinant of neuroinvasiveness for JEV. It is also expected that the JEV/D4 chimera with its pathogenicity in mice and atypical immune profile, could have applications in dengue prophylactic research, in vivo efficacy assessment of dengue vaccines and development of animal research on models of dengue secondary infection.


2021 ◽  
Author(s):  
Swatantra Kumar ◽  
Rajni Nyodu ◽  
Vimal K. Maurya ◽  
Shailendra K. Saxena

Japanese Encephalitis Virus (JEV) is a mosquito borne flavivirus infection. Transmission of JEV starts with the infected mosquito bite where human dermis layer act as the primary site of infection. Once JEV makes its entry into blood, it infects monocytes wherein the viral replication peaks up without any cell death and results in production of TNF-α.One of the most characteristics pathogenesis of JEV is the breaching of blood brain barrier (BBB). JEV propagation occurs in neurons that results in neuronal cell death as well as dissemination of virus into astrocytes and microglia leading to overexpression of proinflammatory cytokines. JEV infection results in host cells mediated secretion of various types of cytokines including type-1 IFN along with TNF-α and IFN-γ. Molecule like nitrous oxide (NO) exhibits antiviral activities against JEV infection and helps in inhibiting the viral replication by blocking protein synthesis and viral RNA and also in virus infected cells clearance. In addition, the antibody can also acts an opsonizing agent in order to facilitate the phagocytosis of viral particles, which is mediated by Fc or C3 receptor. This chapter focuses on the crucial mechanism of JEV induced pathogenesis including neuropathogenesis viral clearance mechanisms and immune escape strategies.


2019 ◽  
Vol 20 (20) ◽  
pp. 5016
Author(s):  
Prapimpun Wongchitrat ◽  
Arisara Samutpong ◽  
Hatairat Lerdsamran ◽  
Jarunee Prasertsopon ◽  
Montri Yasawong ◽  
...  

Japanese encephalitis virus (JEV) infection induces uncontrolled neuronal apoptosis, leading to irreversible brain damage. However, the mechanism of JEV-induced neuronal apoptosis has not been clearly elucidated. This study aimed to investigate both virus replication and neuronal cell apoptosis during JEV infection in human neuroblastoma SH-SY5Y cells. As a result, the kinetic productions of new viral progeny were time- and dose-dependent. The stimulation of SH-SY5Y cell apoptosis was dependent on the multiplicity of infections (MOIs) and infection periods, particularly during the late period of infection. Interestingly, we observed that of full-length Bax (p21 Bax) level started to decrease, which corresponded to the increased level of its cleaved form (p18 Bax). The formation of p18 Bax resulting in cytochrome c release into the cytosol appeared to correlate with JEV-induced apoptotic cell death together with the activation of caspase-3/7 activity, especially during the late stage of a robust viral infection. Therefore, our results suggest another possible mechanism of JEV-induced apoptotic cell death via the induction of the proteolysis of endogenous p21 Bax to generate p18 Bax. This finding could be a new avenue to facilitate novel drug discovery for the further development of therapeutic treatments that could relieve neuronal damage from JEV infection.


2004 ◽  
Vol 85 (2) ◽  
pp. 521-533 ◽  
Author(s):  
Ren-Jye Lin ◽  
Ching-Len Liao ◽  
Yi-Ling Lin

It has been shown that replication of the Japanese encephalitis virus (JEV) can trigger infected cells to undergo apoptosis. In the present study, it is further demonstrated that replication-incompetent virions of JEV, obtained by short-wavelength ultraviolet (UV) irradiation, could also induce host-cell death. It was found that UV-inactivated JEV (UV-JEV) caused cell death in neuronal cells such as mouse neuroblastoma N18 and human neuronal NT-2 cells, but not in non-neuronal baby hamster kidney BHK-21 fibroblast or human cervical HeLa cells. Only actively growing, but not growth-arrested, cells were susceptible to the cytotoxic effects of UV-JEV. Killing of UV-JEV-infected N18 cells could be antagonized by co-infection with live, infectious JEV, suggesting that virions of UV-JEV might engage an as-yet-unidentified receptor-mediated death-signalling pathway. Characteristically, mitochondrial alterations were evident in UV-JEV-infected N18 cells, as revealed by electron microscopy and a loss of membrane potential. N18 cells infected by UV-JEV induced generation of reactive oxygen species (ROS) as well as the activation of nuclear factor kappa B (NF-κB), and the addition of anti-oxidants or specific NF-κB inhibitors to the media greatly reduced the cytotoxicity of UV-JEV. Together, the results presented here suggest that replication-incompetent UV-JEV damages actively growing neuronal cells through a ROS-mediated pathway.


Sign in / Sign up

Export Citation Format

Share Document