Discrete imperialist competitive algorithm for the resource-constrained hybrid flowshop problem

2020 ◽  
Vol 37 (7) ◽  
pp. 345-359
Author(s):  
Xin-Rui Tao ◽  
Jun-Qing Li ◽  
Yu-Yan Han ◽  
Peng Duan ◽  
Kai-Zhou Gao
Author(s):  
Xin-rui Tao ◽  
Jun-qing Li ◽  
Ti-hao Huang ◽  
Peng Duan

Abstract The resource-constrained hybrid flowshop problem (RCHFS) has been investigated thoroughly in recent years. However, the practical case that considers both resource-constrained and energy consumption still has rare research. To address this issue, a discrete imperialist competitive algorithm (DICA) was proposed to minimize the makespan and energy consumption. In the proposed algorithm, first, each solution was represented by a two-dimensional vector, where one vector represented the scheduling sequence and another one showed the machine assignment. Then, a decoding method considering the resource allocation was designed. Finally, we combined DICA and the simulated annealing algorithm (SA) to improve the performance of the proposed approach. Furthermore, we tested the proposed algorithm based on a randomly generated set of real shop scheduling system instances and compared with the existing heuristic algorithms. The results confirmed that the proposed algorithm can solve the RCHFS with high efficiency.


2020 ◽  
pp. 002029402096018
Author(s):  
Kunkun Peng ◽  
Xudong Deng ◽  
Chunjiang Zhang ◽  
Quan-Ke Pan ◽  
Liang Ren ◽  
...  

Steelmaking-refining-Continuous Casting (SCC) is a key process in iron and steel production. SCC scheduling is to determine an optimal schedule for the SCC process, which is a worldwide and important problem. High-quality SCC scheduling methods will help to allocate production resources effectively and increase the productivity. However, dynamic events (e.g. machine breakdown) may happen in the realistic SCC process, which will make the SCC schedule inexecutable or not optimal. In this case, SCC rescheduling is essential in order to obtain a new optimal schedule suitable for the current production environments. The SCC rescheduling can be modeled as hybrid flowshop rescheduling. In this paper, an Improved Imperialist Competitive Algorithm (IICA) is proposed to address the SCC rescheduling. In the proposed IICA, an empire initialization is first devised for constructing an initial population with diversity and certain quality. Moreover, multiswap-based local search and imperialist competition are designed to improve the exploitation ability of the IICA, while revolution and restart strategy are devised to enhance the exploration ability of the IICA. Comparison experiments with three kinds of ICA have shown the efficiency of the IICA.


2018 ◽  
Vol 11 (1) ◽  
pp. 57 ◽  
Author(s):  
Dieu Tien Bui ◽  
Himan Shahabi ◽  
Ataollah Shirzadi ◽  
Kamran Kamran Chapi ◽  
Nhat-Duc Hoang ◽  
...  

The authors wish to make the following corrections to this paper [...]


2013 ◽  
Vol 219 (17) ◽  
pp. 8829-8841 ◽  
Author(s):  
Rasul Enayatifar ◽  
Moslem Yousefi ◽  
Abdul Hanan Abdullah ◽  
Amer Nordin Darus

2012 ◽  
Vol 166-169 ◽  
pp. 493-496
Author(s):  
Roya Kohandel ◽  
Behzad Abdi ◽  
Poi Ngian Shek ◽  
M.Md. Tahir ◽  
Ahmad Beng Hong Kueh

The Imperialist Competitive Algorithm (ICA) is a novel computational method based on the concept of socio-political motivated strategy, which is usually used to solve different types of optimization problems. This paper presents the optimization of cold-formed channel section subjected to axial compression force utilizing the ICA method. The results are then compared to the Genetic Algorithm (GA) and Sequential Quadratic Programming (SQP) algorithm for validation purpose. The results obtained from the ICA method is in good agreement with the GA and SQP method in terms of weight but slightly different in the geometry shape.


Sign in / Sign up

Export Citation Format

Share Document